-
This paper studies the method of improving the transmission characteristics of underwater optical communication system based on Orbital Angular Momentum (OAM) by using Humbert beams of type-II (HB-II). Based on the Rytov principle, we derived an analytical expression for the spiral phase spectrum of Humbert beam of type II (HBII) after through the oceanic turbulence, and compared and analyzed the effects of different oceanic turbulence and beam parameters on the detection probability of HBII beams. The results show that, the detection probability of OAM mode of HB-II beam in ocean turbulence decreases with the increase of propagation distance, topological charge and kinetic energy dissipation rate. The anti-interference ability of the beam in ocean turbulence increases with the decrease of waist width, mean square temperature dissipation rate and temperature salinity contribution rate.For HB-II beam, the fluctuation of detection probability can be relatively smooth when transmitted at different distances, and the detection probability performance is better compared to Airy beam and LG beam. The results can provide theoretical reference for the design of underwater optical communication systems based on HB-II beams.
-
Keywords:
- humbert beams of type II /
- orbital angular momentum /
- oceanic turbulence /
- orbital angular momentum spectra
-
[1] Shen C, Guo Y J, Oubei H M 2016 Optics Express. 24 25502
[2] Yang M C, Wu Y, Feng G Y 2022 Acta Optica Sinica. 42 1701003(in Chinese) [杨莫愁, 吴仪,冯国英 2022 光学学报42 1701003]
[3] Zhao T F, Wang J, Zhang J 2018 Acta Optica Sinica. 38 1206002(in Chinese) [赵太飞,王晶,张杰2018 光学学报38 1206002]
[4] Chen Y H, Duan Z Y, Zheng F Z 2022 Applied Optics. 61 7059
[5] Li S, Wang P, Liu T, Pang Y T, Wang Y 2022 Journal on Communications. 43 14(in Chinese) [李爽,王平,刘涛,潘宇婷,王炜 2022 通信学报43 14]
[6] Wang M J, Zhang Y 2024 China Laser. 51 0806001(in Chinese) [王明军, 张妍 2024 中国激光51 0806001]
[7] Wang X, Wang L, Zhao S 2021 JMSE. 9 442
[8] Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203 (in Chinese) [郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 物理学报74 014203]
[9] J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, E. G. Johnson 2016 Opt. Express. 24 9794
[10] Yang H B, Yan Q Z, Wang P 2022 Opt. Express. 30 9053
[11] Wang M J, Yu W H, Huang C J 2023 Acta Optica Sinica. 43 0626001(in Chinese) [王明军,余文辉,黄朝军 2023 光学学报43 0626001]
[12] Wei Y, Yu Y H, Hei X B 2022 Laser & Optoelectronics Progress. 59 1301001(in Chinese) [韦育,于永河,黑小兵 2022 激光与光电子学进展59 1301001]
[13] Li Y, Yu L, Zhang Y X 2017 Optics Express. 25 12203
[14] Du X, Ding G X, Du H 2023 Acta Optica Sinica. 43 2401003(in Chinese) [杜星,丁桂璇,杜浩 2023 光学学报43 2401003]
[15] Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Applied Optics. 14 53
[16] Liang Q Y, Zhang Y X, Yang D Y 2020 Journal of Marine Science and Engineering. 8 458
[17] Zhu Y, Zhang Y X, Hu Z D 2016 Optics Express. 21 10
[18] Ring J D, Lindberg J, Mourka A 2012 Optics Express. 20 18955
[19] Wang X G, Wang L, Zhao S M 2021 Journal of Marine Science and Engineering. 9 442
[20] Zhang R X, Dai H D, Liu T, Wang W Y, Zhou Y C, Bai H C 2024 Acta Phys. Sin. 11 1958(in Chinese) [张荣香,代华德,刘涛,王唯钰,周允城,毕慧聪 2025 物理学报11 1958]
[21] N. Nossir, L. Dalil-Essakali, A. Belafhal 2024 Optical and Quantum Electronics. 56 189
[22] N. Nossir, L. Dalil-Essakali, A. Belafhal 2021 Optical and Quantum Electronics. 53 94
[23] Abdelmajid Belafhal, Faroq Saad 2017 Optik. 15 516
[24] D. Lopez-Mago, M.A. Bandres, J.C. Gutiérrez-Vega 2009 Proc.SPIE. 35 743013
[25] A. Belafhal, H. Nebdi 2014 Opt. Quant. Electron. 25 201
[26] S. Chib, F. Khannous, A. Belafhal 2023 Optical and Quantum Electronics. 55 936
[27] N. Nossir, L. Dalil Essakali, A. Belafhal 2021 Optical and Quantum Electronics. 53 94
[28] N. Nossir, L. Dalil Essakali, A. Belafhal 2023 Optical and Quantum Electronics. 55 876
[29] H. T. Eyyuboğlu, Y. Cai, A. Belafhal 2012 Opt. Commun. 21 4194
Metrics
- Abstract views: 48
- PDF Downloads: 2
- Cited By: 0