-
This work proposes a pattern recognition method for the superposition state orbital angular momentum (OAM) of vortex beams based on convolutional neural network (CNN) and improved vision transformer (VIT). Organically integrating the local feature extraction advantages of CNN with the global fast classification ability of VIT driven by sparse attention mechanism, using three sets of Laguerre-Gaussian (LG) beam patterns with superimposed light field intensity distribution maps of ocean turbulence distortion as input, efficient and accurate recognition of end-to-end wavefront distortion is realized. MATLAB numerical simulation is adopted to simulate the superposition state LG beam in ocean turbulent environment, power spectrum inversion method is used to simulate ocean turbulence, and recognition accuracy and confusion matrix are used as evaluation indicators for OAM pattern recognition. The experimental results show that the CNN-VIT model exhibits excellent performance in OAM pattern recognition accuracy under different ocean turbulence intensities, wavelengths, transmission distances, and mode intervals. Compared with existing CNN and VIT, the proposed model improves recognition accuracy by 23.5% and 9.65% respectively under strong ocean turbulence conditions, thus exhibiting strong generalization ability under unknown ocean turbulence strengths. This demonstrates the potential application of the CNN-VIT model in OAM pattern recognition of vortex light superposition states.
-
Keywords:
- vortex beam /
- ocean turbulence /
- convolutional neural network /
- mode recognition
-
表 1 LG光束模式选择
Table 1. LG beam mode selection.
组别 拓扑荷数间隔 叠加OAM模式 Set1 $ \Delta l=1 $ $ \left\{{p}_{2}=0, 1, 2, 3;\right.\left.{l}_{2}=-2, -1, 0, 1\right\} $ Set2 $ \Delta l=3 $ $ \left\{{p}_{2}=0, 1, 2, 3;\right.\left.{l}_{2}=-5, -2, 1, 4\right\} $ Set3 $ \Delta l=5 $ $ \left\{{p}_{2}=0, 1, 2, 3;\right.\left.{l}_{2}=-8, -3, 2, 7\right\} $ 表 2 硬件平台配置和模型参数
Table 2. Hardware platform configuration and model parameters.
配置 型号 参数设置 数值 操作系统 Windows10 迭代次数 100 CPU Intel40核E5
2670处理器批次值 16 GPU NVIDIA
RTX3090学习率 0.01 内存 64 G 标签平滑 Le-5 CDUA 11 学习率
衰减模型Cosine Annealing
LrUpdater编程语言 Python3.8 优化器类型 Adam -
[1] Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light: Sci. Appl. 7 17146
[2] Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903
Google Scholar
[3] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90
Google Scholar
[4] Molina Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601
Google Scholar
[5] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488
Google Scholar
[6] Ren Y X, Huang H, Xie G D, Ahmed N, Yan Y, Erkmen B I, Chandrasekaran N, Lavery M P J, Steinhoff N K, Tur M, Dolinar S, Neifeld M, Padgett M J, Boyd R W, Shapiro J H, Willner A E 2013 Opt. Lett. 38 4062
Google Scholar
[7] Zhu X L, Guo L, Zhu Q 2018 IEEE Photonics J. 10 135
[8] Fan W Q, Gao F L, Xue F C, Guo J J, Xiao Y, Gu Y J 2024 Appl. Opt. 63 982
Google Scholar
[9] Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84
Google Scholar
[10] 杨春勇, 闪开鸽 2020 中南民族大学学报(自然科学版) 39 390
Yang C Y, Shan K G 2020 J. South-Central Minzhu Univ. (Nat. Sci. Ed. ) 39 390
[11] Wang X Y, Wang Z Y, Cheng Z Y, Pu J X 2022 Chin. J. Quantum Electron. 39 955
[12] Wang Z L, Li X F, Cai Y J, Liu X L 2025 Opt. Express 33 12591
Google Scholar
[13] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博 2025 物理学报 74 014203
Google Scholar
Guo Y, Lü H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203
Google Scholar
[14] 张成志, 曹阳, 涂巧玲, 彭小峰 2023 激光杂志 22 062235
Zhang C Z, Cao Y, Tu Q L, Peng X F 2023 Laser J. 22 062235
[15] Zhou X, Chen C Y, Yu H Y 2023 Laser Optoelectron. Prog. 60 2306003
[16] Wang J, Wang C B, Tan Z K, Lei S C, Wu P F 2024 Sci. Sin. Phys. Mech. Astron. 54 284211
Google Scholar
[17] Lu J N, Cao C Y, Zhu Z Q, Gu B 2020 Appl. Phys. Lett. 116 201105
Google Scholar
[18] 吴鹏飞, 王小蝶, 王姣, 谭振坤, 贾致远 2023 光学学报 43 1126001
Google Scholar
Wu P F, Wang X D, Wang J, Tan Z K, Jia Z Y 2023 Acta Opt. 43 1126001
Google Scholar
[19] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 104217
Google Scholar
Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 104217
Google Scholar
[20] Nikishov V 2000 Int. J. Fluid Mech. Res. 27 82
Google Scholar
[21] Hu J, Shen L, Albanie S, Sun G, Wu E H 2020 IEEE Trans. Pattern Anal. Mach. Intell. 42 2011
Google Scholar
[22] Wang T T, Cao D H, Han J Z 2022 Front. Neurosci. 16 5
Metrics
- Abstract views: 553
- PDF Downloads: 9
- Cited By: 0









DownLoad: