-
In this paper, we investigate the channel capacity of the Hypergeometric-Gaussian type-II (HyGG-II) beam propagating in ocean turbulence. Furthermore, we propose a method utilizing a focusing mirror to enhance the channel capacity. Comparison among focused HyGG-II beam, unfocused HyGG-II beam and Laguerre Gaussian beam is also carried out. The results indicate that the employment of focusing mirrors is effective in enhancing the channel capacity, however, the corresponding transmission distance range is restricted to approximately 100 meters. Optimal enhancement is observed near the convergence point of the HyGG-II beam as focused by mirrors. By increasing the wavelength and adjusting the focal length of the focusing mirror or the waist radius of the HyGG-II beam, further improvements in channel capacity can be achieved. Moreover, when the HyGG-II beam is transmitted in oceanic turbulence characterized by a smaller dissipation rate of kinetic energy per unit mass and a larger dissipation rate of mean-squared temperature, the enhancement effect of the focusing mirrors on the channel capacity is more pronounced. Compared to Laguerre Gaussian beam, HyGG-II beams exhibit superior channel capacity at the same transmission distance, irrespective of whether focusing mirrors are used. The findings can serve as a reference for the design of underwater wireless optical communication system based on HyGG-II-beam.
-
Keywords:
- Hypergeometric-Gaussian type-II beam /
- focusing mirror /
- ocean turbulence /
- channel capacity
-
[1] Xu L F, Zhou Z C, Ma X D, Korotkova O, Wang F 2024 Opt. Lett. 49 246
[2] Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203 (in Chinese)[郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 物理学报 74 014203]
[3] Pan Y T, Wang P, Wang W, Li S, Cheng M J, Guo L X 2021 Opt.Express 29 12644
[4] Zhan H C, Wang L, Wang W N 2022 J. Lightwave Technol. 40 4129
[5] Zhan H C, Wang L, Wang W N, Zhao S M 2023 J. Opt. Soc. Am. B 40 187
[6] Wang H, Li H, Zhou Y L, Wang P 2022 Opt. Eng. 61 046102
[7] Wang M J, Liu H Z, Zhang J L, Wang J 2023 Acta Opt. Sin. 43 2401004 (in Chinese)[王明军, 刘豪振, 张佳琳, 王姣 2023 光学学报 43 2401004]
[8] Liu C X, Sun J M, Shang X N, Gu X N, Li W D 2025 Laser Optoelectron. Prog. 62 0301002 (in Chinese) [刘昌勋, 孙嘉敏, 商祥年, 顾永建, 李文东 2025 激光与光电子学进展 62 0301002]
[9] Karimi E, Piccirillo B, Marrucci L, Santamato E 2008 Opt.Express 16 21069
[10] Jin G, Bian L R, Huang L, Tang B 2020 Opt. Laser Technol. 126 106124
[11] Khannous F, Ebrahim A A A, Belafhal A 2016 Chin. Phys. B 25 044206
[12] Gradshteyn I S, Ryzhik I M 2014 Table of integrals, series, and products, (New York: Academic Press) p325-331
[13] Torner L, Torres J, Carrasco S 2005 Opt. Express 13 873
[14] Yang H B, Yan Q Z, Wang P, Hu L F, Zhang Y X 2022 Opt. Express 30 9053
[15] Wang X, Wang L, Zhao S 2021 J. Mar. Sci. Eng. 9 442
[16] Nikishov V V, Nikishov V I 2020 Int. J. Fluid Mech. Res. 27 82
[17] Paterson C 2005 Phys. Rev. Lett. 94 153901
[18] Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Appl. Opt. 60 4135
[19] Tong Z J, Yang X Q, Chen X, Zhang H, Zhang Y F, Zou H W, Zhao Y F, Xu J 2021 Opt. Express 29 20262
[20] Zhou H Y, Zhang M L, Wang X Z, Ren X M 2022 J. Lightwave Technol. 40 3654
[21] Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451
[22] Zhang T Y, Fei C, Wang Y, Du J, Xie Y T, Zhang F, Tian J H, Zhang G W, Wang G X, Hong X J, He S L 2024 Opt. Express 32 36207
[23] Ma Z Q, Gao G J, Zhang J L, Guo Y G, Zhang F, Huang S G 2025 J. Lightwave Technol. 43 1140
Metrics
- Abstract views: 31
- PDF Downloads: 0
- Cited By: 0