Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Subwavelength light focusing using quadric cylinder surface plasmonic lens with gold film slits filled with dielectric

Hu Chang-Bao Xu Ji Ding Jian-Ping

Citation:

Subwavelength light focusing using quadric cylinder surface plasmonic lens with gold film slits filled with dielectric

Hu Chang-Bao, Xu Ji, Ding Jian-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel plasmonic lens (PL) with simple nano-structure is proposed to realize the subwavelength focusing. The proposed PL is composed of the gold film with only five dielectric-filled nanoslits. The exit surface of the gold film is processed into quadric shape that can be parabolic, elliptical or hyperbolic cylinders. The film is fabricated to form five uniformly spaced nanoslits with different widths and depths. All five slits are symmetrically arranged with respect to the center of lens and filled with a dielectric medium (i.e., SiO2). Under the illumination of TM polarized beams, the surface plasmon polaritons (SPPs) are excited at the entrance surface of the PL, then pass through the SiO2-filled slits while acquiring specific phase retardations, and are finally coupled to the light waves in the free space. Each light wave originating from the slit can be regarded as an individual point source, and the constructive interference of light waves from slits gives rise to the beam focusing at the focal plane of the PL. We investigate the phase modulation mechanism of the PL and find that the focusing performance relies on the shape of exit surface, filling medium and geometric parameters of the slits. A suitable phase modulation can be achieved by adjusting the structure parameters of the PL with a specific exit surface shape. Three kinds of quadratic cylindrical PLs, i.e., parabolic, elliptical and hyperbolic cylindrical ones with continuous or stepped exit surface are designed to realize the focusing of TM polarized subwavelength beams in visible spectrum. The finite difference time domain (FDTD) method is employed to compute the light field and to investigate the focusing characteristics of the proposed PL. The performance measurements include the focal length, depth of focus (DOF) and full-width half-maximum (FWHM). The simulation results confirm that the proposed PL with a 2-m-diameter aperture can achieve the subwavelength focusing at a focal length of micron scale. The attainable smallest FWHM of the focal spot is 0.4050 (0 denoting the wavelength of the incident light) which is well beyond the diffraction limit. It is also worth mentioning that the step-like cylindrical PL can yield a sharper focal spot than the continuous cylindrical PL. For example, the FWHM of focal spot produced by the stepped elliptical cylindrical PL is about 92% of that produced by the continuous elliptical cylindrical PL. The proposed PL has the advantages of simple and compact structure with much smaller lateral dimension and easy integration with other photonic devices. Our study helps design the easy-to-fabricate PLs and facilitates applications of plasmonic devices in the fields such as optical micro manipulation, super-resolution imaging, optical storage and biochemical sensing.
      Corresponding author: Ding Jian-Ping, jpding@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474156, 11404170, 11274158).
    [1]

    Kawata S 2001 Near-Field Optics and Surface Plasmon Polaritons (Vol.81) (Berlin Heidelberg: Springer) p19

    [2]

    Juan M L, Righini M Quidant R 2011 Nat Photonics 5 349

    [3]

    MAIER S A 2006 Plasmonics:Fundamentals and Applications (New York: Springer) p21

    [4]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express 20 17734

    [5]

    Takeda1 M, Kimura1 N, Inoue T, Aizawa K 2015 Jpn. J. Appl. Phys. 54 09MG02

    [6]

    Zhao X N, Zhang X P, Cao P F, Cheng L, Duan J X, Cheng L B, Kong W J, Yang L L 2013 Optik 124 6740

    [7]

    Lan L, Jiang W, Ma Y 2013 Appl. Phys.Lett. 102 231119

    [8]

    Venugopalan P, Zhang Q M, Li X P, Kuipers L, Gu M 2014 Opt. Lett. 39 5744

    [9]

    Wang J, Zhou W 2010 Plasmonics 5 325

    [10]

    Guo K, Liu J L, Liu S T 2014 Opt Commun 331 124

    [11]

    Liu Y, Fu Y Q, Zhou X L 2010 Plasmonics 5 117

    [12]

    Hao F H, Wang R Wang J 2010 Plasmonics 5 45

    [13]

    Okuda S, Kimur N, Takeda M, Inoue T, Aizawa K 2014 Opt. Rev. 21 560

    [14]

    Liu Y X, Xu Hua, Stief F, Zhitenev N, Yu M 2011 Opt. Express 19 20233

    [15]

    Wu G, Chen J J Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [16]

    Duan X F Zhou G R, Huang Y Q, Shang Y F, Ren X M 2015 Opt. Express 23 2639

    [17]

    Cheng L, Cao P F, Li Y, Kong W J, Zhao X N, Zhang X P 2012 Plasmonics 7 175

    [18]

    Sun Z J, Kim H K 2004 Appl. Phys. Lett. 85 642

    [19]

    Yu Y T, Zappe H 2011 Opt. Express 19 9434

    [20]

    Xu T, Wang C T, Du C L, Luo X G 2008 Opt. Express 16 4753

    [21]

    Johnson R B, Christy R W 1972 Phys. Rev. B 6 4370

    [22]

    Palik E D 1985 Handbook of optical constants of solids (New York: Academic Press) pp723-729

    [23]

    Barnes W L 2006 J. Opt. A-Pure Appl. Opt. 8 S87

    [24]

    Chen J N, Xu Q F, Wang G 2011 Chinese. Phys. B 20 114211

    [25]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [26]

    Li Y, Wolf E 1981 Opt. Commun. 39 211

    [27]

    Feng D 2014 J. Opt. Soc. Am. A 31 2071

    [28]

    Shi H F, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 093111

  • [1]

    Kawata S 2001 Near-Field Optics and Surface Plasmon Polaritons (Vol.81) (Berlin Heidelberg: Springer) p19

    [2]

    Juan M L, Righini M Quidant R 2011 Nat Photonics 5 349

    [3]

    MAIER S A 2006 Plasmonics:Fundamentals and Applications (New York: Springer) p21

    [4]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express 20 17734

    [5]

    Takeda1 M, Kimura1 N, Inoue T, Aizawa K 2015 Jpn. J. Appl. Phys. 54 09MG02

    [6]

    Zhao X N, Zhang X P, Cao P F, Cheng L, Duan J X, Cheng L B, Kong W J, Yang L L 2013 Optik 124 6740

    [7]

    Lan L, Jiang W, Ma Y 2013 Appl. Phys.Lett. 102 231119

    [8]

    Venugopalan P, Zhang Q M, Li X P, Kuipers L, Gu M 2014 Opt. Lett. 39 5744

    [9]

    Wang J, Zhou W 2010 Plasmonics 5 325

    [10]

    Guo K, Liu J L, Liu S T 2014 Opt Commun 331 124

    [11]

    Liu Y, Fu Y Q, Zhou X L 2010 Plasmonics 5 117

    [12]

    Hao F H, Wang R Wang J 2010 Plasmonics 5 45

    [13]

    Okuda S, Kimur N, Takeda M, Inoue T, Aizawa K 2014 Opt. Rev. 21 560

    [14]

    Liu Y X, Xu Hua, Stief F, Zhitenev N, Yu M 2011 Opt. Express 19 20233

    [15]

    Wu G, Chen J J Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [16]

    Duan X F Zhou G R, Huang Y Q, Shang Y F, Ren X M 2015 Opt. Express 23 2639

    [17]

    Cheng L, Cao P F, Li Y, Kong W J, Zhao X N, Zhang X P 2012 Plasmonics 7 175

    [18]

    Sun Z J, Kim H K 2004 Appl. Phys. Lett. 85 642

    [19]

    Yu Y T, Zappe H 2011 Opt. Express 19 9434

    [20]

    Xu T, Wang C T, Du C L, Luo X G 2008 Opt. Express 16 4753

    [21]

    Johnson R B, Christy R W 1972 Phys. Rev. B 6 4370

    [22]

    Palik E D 1985 Handbook of optical constants of solids (New York: Academic Press) pp723-729

    [23]

    Barnes W L 2006 J. Opt. A-Pure Appl. Opt. 8 S87

    [24]

    Chen J N, Xu Q F, Wang G 2011 Chinese. Phys. B 20 114211

    [25]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [26]

    Li Y, Wolf E 1981 Opt. Commun. 39 211

    [27]

    Feng D 2014 J. Opt. Soc. Am. A 31 2071

    [28]

    Shi H F, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 093111

  • [1] Wu Wan-Ling, Wang Xiang-Ke, Yu Hua-Kang, Li Zhi-Yuan. Sub-wavelength focused light and optical trapping application based on two-mode interference from an optical micro-/nanofiber. Acta Physica Sinica, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [3] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [5] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [6] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [7] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [8] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [10] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [11] Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu. Research progress of plasmonic cathodoluminesecence characterization. Acta Physica Sinica, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [12] Gao Xiang-Jun, Zhu Li, Guo Wen-Long. Design and application of high polarized purity metasurface lens. Acta Physica Sinica, 2017, 66(20): 204102. doi: 10.7498/aps.66.204102
    [13] Zhang Cheng, Fang Long-Jie, Zhu Jian-Hua, Zuo Hao-Yi, Gao Fu-Hua, Pang Lin. Four-element division algorithm for focusing light through scattering medium. Acta Physica Sinica, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [14] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [15] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] Yin Xiang-Bao, Liu Yong-Jun, Zhang Ling-Li, Lü Yue-Lan, Huo Bo-Fan, Sun Wei-Min. Liquid crystal lens with large-range electrically controllable variable focal length. Acta Physica Sinica, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [17] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [18] Zhong Yi, Xu Ji, Lu Yun-Qing, Wang Min-Juan, Wang Jin. Subwavelength focusing of cylindrical vector beams by plano-concave lens based on one dimensional metallic photonic crystal. Acta Physica Sinica, 2014, 63(23): 237801. doi: 10.7498/aps.63.237801
    [19] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [20] Wang Li, Hu Xiang-Ming. Constructive interference: electromagnetically induced absorption. Acta Physica Sinica, 2004, 53(8): 2544-2550. doi: 10.7498/aps.53.2544
Metrics
  • Abstract views:  6459
  • PDF Downloads:  219
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2016
  • Accepted Date:  26 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回