Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Egg shell membrane based electrolyte gated oxide neuromorphic transistor

Li Yan Chen Xin-Li Wang Wei-Sheng Shi Zhi-Wen Zhu Li-Qiang

Citation:

Egg shell membrane based electrolyte gated oxide neuromorphic transistor

Li Yan, Chen Xin-Li, Wang Wei-Sheng, Shi Zhi-Wen, Zhu Li-Qiang
PDF
HTML
Get Citation
  • In recent years, the study of neuromorphic devices has received extensive attention. It is becoming an important branch of the development of artificial intelligence technology. At the same time, natural biomaterials have several priorities, such as biodegradability, good biocompatibility, and non-toxicity, and have important value in novel portable intelligent systems. The egg shell membrane (ESM) is a fiber scaffold composed of highly crosslinked collagen, glycoprotein and cysteine-rich eggshell membrane proteins. It has porous morphology, thermal stability, mechanical strength, etc. Therefore, these protein-based fiber membranes have several potential applications, including nanocatalysts, microbial fuel cells, and adsorption of toxic dyes. This study adopts ESM as electrolyte, exhibiting extremely high proton conductivity of about 6.4×10–3 S/cm and extremely high electric-double-layer (EDL) capacitance of about 2.8 µF/cm2 at room temperature. Thus, it has extremely strong interfacial EDL electrostatic modulation capability. Then, indium tin oxide EDL transistor is fabricated by using a single step masking processing and magnetron sputtering deposition technology. The device exhibits typical n-type output curves and transfer curves at low operating voltage. In addition, transfer curves are scanned twice. It is observed that the curves approach to each other quite well, indicating the good stabilities. Owing to the extremely strong proton gating effects, the device exhibits excellent electrical performances. Specifically, ON/OFF ratio, mobility and sub-threshold swing are estimated to be about 2.5×106, about 3.2 cm2/(V·s), and about 213 mV/dec, respectively. With the unique interfacial EDL modulation activities of ESM, the transistor can mimic some important synaptic plasticity behaviors, such as excitatory postsynaptic current (EPSC) and paired pulse facilitation (PPF). With the increase of pre-synaptic spike amplitude, the EPSC value increases correspondingly. With the increase of pre-synaptic spike frequency, the EPSC grain increases, indicating the potentials in high-pass synaptic filtering. By loading 64 potentiation spikes and 64 depression spikes, multi-level synaptic weight can be updated, demonstrating potentiation activity and depression activity. Again, with the same potentiation spikes and depression spikes, synaptic weight value curves approach to each other quite well, indicating that the present ESM gated oxide neuromorphic transistor has good stability. Then, an artificial neural network is adopted to perform supervised learning with Modified National Institute of Standards and Technology (MNIST) database. For simulation, a two-layer multilayer perceptron (MLP) neural network with 400 input neurons, 100 hidden neurons and 10 output neurons is adopted. The best recognition accuracy is as high as 92.59%. The proposed ESM gated oxide neuromorphic transistors have certain potentials in low-cost biodegradable neuromorphic systems.
      Corresponding author: Zhu Li-Qiang, zhuliqiang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51972316, U22A2075) and the Ningbo Key Scientific and Technological Project, China (Grant No. 2021Z116).
    [1]

    Abbott L F, Regehr W G 2004 Nature 431 796Google Scholar

    [2]

    Poo M M, Du J L, Ip N Y, Xiong Z Q, Xu B, Tan T 2016 Neuron 92 591Google Scholar

    [3]

    James C D, Aimone J B, Miner N E, Vineyard C M, Rothganger F H, Carlson K D, Mulder S A, Draelos T J, Faust A, Marinella M J, Naegle J H, Plimpton S J 2017 Biol. Inspired Cognit. Archit. 19 49

    [4]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [5]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [6]

    Kim M K, Lee J S 2018 ACS Nano 12 1680Google Scholar

    [7]

    Chen J B, Guo T T, Yang C Y, Xu J W, Gao L Y, Jia S J, Zhang P, Chen J T, Zhao Y, Wang J, Zhang X Q, Li Y 2023 J. Phys. Chem. C 127 3307Google Scholar

    [8]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 3158Google Scholar

    [9]

    Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z, Jin K J 2019 Adv. Mater. 31 1900379Google Scholar

    [10]

    Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S, Lee T W 2020 Adv. Mater. 32 1906899Google Scholar

    [11]

    Shao F, Feng P, Wan C J, Wan X, Yang Y, Shi Y, Wan Q 2017 Adv. Electron. Mater. 3 1600509Google Scholar

    [12]

    He Y L, Nie S, Liu R, Jiang S S, Shi Y, Wan Q 2019 Adv. Mater. 31 1900903Google Scholar

    [13]

    Feng G D, Jiang J, Li Y R, Xie D D, Tian B B, Wan Q 2021 Adv. Funct. Mater. 31 2104327Google Scholar

    [14]

    Guo Y B, Zhu L Q, Long T Y, Yun D, Ren Z Y 2020 J. Mater. Chem. C 8 2780Google Scholar

    [15]

    Fu Y M, Wan C J, Zhu L Q, Xiao H, Chen X D, Wan Q 2018 Adv. Biosyst. 2 1700198Google Scholar

    [16]

    Wang X J, Zhu L, Chen C S, Mao H W, Zhu Y X, Zhu Y, Yang Y, Wan C J, Wan Q 2021 Flexible. Printed Electron. 6 044008Google Scholar

    [17]

    Feng G D, Jiang J, Zhao Y H, Wang S T, Liu B, Yin K, Niu D M, Li X H, Chen Y Q, Duan H G 2020 Adv. Mater. 32 1906171Google Scholar

    [18]

    Zhong G K, Zi M F, Ren C L, Xiao Q, Tang M K, Wei L Y, An F, Xie S H, Wang J B, Zhong X L, Huang M Q, Li J Y 2020 Appl. Phys. Lett. 117 092903Google Scholar

    [19]

    Li L K, Wang X L, Pei J X, Liu W J, Wu X H, Zhang D W, Ding S J 2021 Sci. China Mater. 64 1219Google Scholar

    [20]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [21]

    Qiu W J, Sun J, Liu W R, Huang Y L, Chen Y, Yang J L, Gao Y L 2020 Org. Electron. 84 105810Google Scholar

    [22]

    Ding G L, Yang B D, Chen R S, Mo W A, Zhou K, Liu Y, Shang G, Zhai Y B, Han S T, Zhou Y 2021 Small 17 2103175Google Scholar

    [23]

    Li Y, Zhang C, Zhao X L, Tong Y H, Tang Q X, Liu Y C 2022 ACS Appl. Electron. Mater. 4 316Google Scholar

    [24]

    Raeis-Hosseini N, Park Y, Lee J S 2018 Adv. Funct Mater. 28 1800553Google Scholar

    [25]

    Guo L Q, Tao J, Zhu L Q, Xiao H, Gao W T, Yu F, Fu Y M 2018 Org. Electron. 61 312Google Scholar

    [26]

    He Y L, Nie S, Liu R, Shi Y, Wan Q 2019 IEEE Electron Device Lett. 40 139Google Scholar

    [27]

    Cai J C, Ren Z Y, Zhu L Q, Dai Y J, Zeng Y H, Guo W, Xiao H, Ye J C 2021 J. Phys. D-Appl. Phys. 54 375102Google Scholar

    [28]

    Wen J, Zhu L Q, Qi H F, Ren Z Y, Wang F, Xiao H 2020 Org. Electron. 82 105782Google Scholar

    [29]

    Jiang S H, Feng P, Yang Y, Du P F, Shi Y, Wan Q 2016 IEEE Electron Device Lett. 37 287Google Scholar

    [30]

    Li Z Y, Zhu L Q, Guo L Q, Ren Z Y, Xiao H, Cai J C 2021 ACS Appl. Mater. Interfaces 13 7784Google Scholar

    [31]

    Weymuth T, Jacob C R, Reiher M 2010 J. Phys. Chem. B 114 10649Google Scholar

    [32]

    Bandekar J 1992 Biochim. Biophys. Acta 1120 123Google Scholar

    [33]

    Dong Q, Su H L, Zhang D, Cao W, Wang N 2007 Langmuir 23 8108Google Scholar

    [34]

    Kong J, Yu S 2007 Acta Bioch. Bioph. Sin. 39 549Google Scholar

    [35]

    Arami M, Limaee N Y, Mahmoodi N M 2006 Chemosphere 65 1999Google Scholar

    [36]

    Fu Y M, Zhu L Q, Wen J, Xiao H, Liu R 2017 J. Appl. Phys. 121 205301Google Scholar

    [37]

    Mukhamedyarov M A, Grishin S N, Zefirov A L, Palotas A 2009 Pflugers Arch. -Eur. J. Physiol 458 563Google Scholar

    [38]

    Chen P Y, Peng X C, Yu S M 2018 IEEE Trans. Comput. -Aided Design Integr. Circuits Syst. 37 3067Google Scholar

    [39]

    Wang W S, Ren Z Y, Shi Z W, Xiao H, Zeng Y H, Zhu L Q 2022 IEEE Electron Device Lett. 43 737Google Scholar

  • 图 1  (a) ESM电解质膜栅控ITO神经形态晶体管的制备流程示意图, 插图是器件的照片; (b) 鸡蛋壳内ESM内外双层分层情况照片; (c) ESM内膜内表面的SEM显微形貌照片; (d) ESM内膜外表面的SEM显微形貌照片; (e) ESM膜的截面SEM照片; (f) ESM膜的傅里叶变换红外光谱(FTIR)

    Figure 1.  (a) Device processing of ESM electrolyte gated ITO neuromoprhic transistor; Inset: photograph of device; (b) photograph of ESM double layer in egg shell; (c) SEM morphology image of ESM inner membrane inner surface; (d) SEM morphology image of ESM inner membrane outer surface; (e) SEM cross sectional image of ESM inner membrane; (f) Fourier transform infrared spectroscopy of ESM.

    图 2  (a) ESM膜电解质的单位面积电容与频率关系曲线, 插图为ITO/ESM/ITO三明治电容结构示意图; (b) ESM膜电解质的阻抗频谱数据, 插图为ESM膜的漏电特性

    Figure 2.  (a) Frequency-dependent capacitance of ESM based electrolyte; Inset: schematic diagram of ITO/ESM/ITO sandwiched testing structure; (b) impedance spectroscopy data of ESM; Inset: leakage current.

    图 3  ESM栅控ITO神经形态晶体管的(a)输出特性曲线和(b)转移特性曲线. 图(b)中黑线为第一次扫描, 红线为第二次扫描

    Figure 3.  Electrical performances of ESM gated ITO neuromorphic transistor: (a) Output characteristic curves; (b) transfer characteristic curves (black symbol, the first scan; red symbol, the second scan).

    图 4  (a) 生物突触结构(左)及ITO神经形态晶体管(右)示意图; (b) 典型的EPSC响应, 读取电压Vds = 0.5 V, 前突触刺激为(1 V, 10 ms); (c) 两个前突触刺激下的EPSC响应, 前突触刺激为(1 V, 10 ms), 间隔时间∆t = 20 ms; (d) η随Δt的变化关系

    Figure 4.  (a) Schematic diagram of a synapse (left) and ITO neuromorphic transistor (right); (b) typical EPSC response triggered with a presynaptic spike (1 V, 10 ms), Vds = 0.5 V; (c) EPSC response triggered with paired presynaptic spikes (1 V, 10 ms), interval time Δt = 20 ms; (d) η as a function of Δt value.

    图 5  (a) 不同刺激强度下的EPSC相应; (b) 不同频率刺激序列下的EPSC响应; (c) 高通滤波功能示意图; (d) EPSC幅值增益与刺激频率的关系.

    Figure 5.  (a) EPSC responses under different presynaptic spike amplitude; (b) EPSC responses under spike trains with different frequency; (c) schematic diagram of high-pass filtering; (d) EPSC grain as a function of spike frequency.

    图 6  (a) 施加在ITO神经形态晶体管上的刺激信号示意图; (b), (c) 不同增强脉冲和抑制脉冲刺激下的权重更新结果; (d) 两层MLP模拟器的示意图, 由400个输入神经元、100个隐藏神经元和10个输出神经元组成; (e) MNIST识别精度

    Figure 6.  (a) Schematic diagram of spike loaded on ITO neuromorphic transistor; (b) and (c) synaptic weight updating obtained under different potentiation/depression spikes; (d) schematic diagram of two-layer MLP simulator, consisting of 400 input neurons, 100 hidden neurons and 10 output neurons; (e) recognition accuracies for MNIST patterns.

  • [1]

    Abbott L F, Regehr W G 2004 Nature 431 796Google Scholar

    [2]

    Poo M M, Du J L, Ip N Y, Xiong Z Q, Xu B, Tan T 2016 Neuron 92 591Google Scholar

    [3]

    James C D, Aimone J B, Miner N E, Vineyard C M, Rothganger F H, Carlson K D, Mulder S A, Draelos T J, Faust A, Marinella M J, Naegle J H, Plimpton S J 2017 Biol. Inspired Cognit. Archit. 19 49

    [4]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [5]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [6]

    Kim M K, Lee J S 2018 ACS Nano 12 1680Google Scholar

    [7]

    Chen J B, Guo T T, Yang C Y, Xu J W, Gao L Y, Jia S J, Zhang P, Chen J T, Zhao Y, Wang J, Zhang X Q, Li Y 2023 J. Phys. Chem. C 127 3307Google Scholar

    [8]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 3158Google Scholar

    [9]

    Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z, Jin K J 2019 Adv. Mater. 31 1900379Google Scholar

    [10]

    Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S, Lee T W 2020 Adv. Mater. 32 1906899Google Scholar

    [11]

    Shao F, Feng P, Wan C J, Wan X, Yang Y, Shi Y, Wan Q 2017 Adv. Electron. Mater. 3 1600509Google Scholar

    [12]

    He Y L, Nie S, Liu R, Jiang S S, Shi Y, Wan Q 2019 Adv. Mater. 31 1900903Google Scholar

    [13]

    Feng G D, Jiang J, Li Y R, Xie D D, Tian B B, Wan Q 2021 Adv. Funct. Mater. 31 2104327Google Scholar

    [14]

    Guo Y B, Zhu L Q, Long T Y, Yun D, Ren Z Y 2020 J. Mater. Chem. C 8 2780Google Scholar

    [15]

    Fu Y M, Wan C J, Zhu L Q, Xiao H, Chen X D, Wan Q 2018 Adv. Biosyst. 2 1700198Google Scholar

    [16]

    Wang X J, Zhu L, Chen C S, Mao H W, Zhu Y X, Zhu Y, Yang Y, Wan C J, Wan Q 2021 Flexible. Printed Electron. 6 044008Google Scholar

    [17]

    Feng G D, Jiang J, Zhao Y H, Wang S T, Liu B, Yin K, Niu D M, Li X H, Chen Y Q, Duan H G 2020 Adv. Mater. 32 1906171Google Scholar

    [18]

    Zhong G K, Zi M F, Ren C L, Xiao Q, Tang M K, Wei L Y, An F, Xie S H, Wang J B, Zhong X L, Huang M Q, Li J Y 2020 Appl. Phys. Lett. 117 092903Google Scholar

    [19]

    Li L K, Wang X L, Pei J X, Liu W J, Wu X H, Zhang D W, Ding S J 2021 Sci. China Mater. 64 1219Google Scholar

    [20]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [21]

    Qiu W J, Sun J, Liu W R, Huang Y L, Chen Y, Yang J L, Gao Y L 2020 Org. Electron. 84 105810Google Scholar

    [22]

    Ding G L, Yang B D, Chen R S, Mo W A, Zhou K, Liu Y, Shang G, Zhai Y B, Han S T, Zhou Y 2021 Small 17 2103175Google Scholar

    [23]

    Li Y, Zhang C, Zhao X L, Tong Y H, Tang Q X, Liu Y C 2022 ACS Appl. Electron. Mater. 4 316Google Scholar

    [24]

    Raeis-Hosseini N, Park Y, Lee J S 2018 Adv. Funct Mater. 28 1800553Google Scholar

    [25]

    Guo L Q, Tao J, Zhu L Q, Xiao H, Gao W T, Yu F, Fu Y M 2018 Org. Electron. 61 312Google Scholar

    [26]

    He Y L, Nie S, Liu R, Shi Y, Wan Q 2019 IEEE Electron Device Lett. 40 139Google Scholar

    [27]

    Cai J C, Ren Z Y, Zhu L Q, Dai Y J, Zeng Y H, Guo W, Xiao H, Ye J C 2021 J. Phys. D-Appl. Phys. 54 375102Google Scholar

    [28]

    Wen J, Zhu L Q, Qi H F, Ren Z Y, Wang F, Xiao H 2020 Org. Electron. 82 105782Google Scholar

    [29]

    Jiang S H, Feng P, Yang Y, Du P F, Shi Y, Wan Q 2016 IEEE Electron Device Lett. 37 287Google Scholar

    [30]

    Li Z Y, Zhu L Q, Guo L Q, Ren Z Y, Xiao H, Cai J C 2021 ACS Appl. Mater. Interfaces 13 7784Google Scholar

    [31]

    Weymuth T, Jacob C R, Reiher M 2010 J. Phys. Chem. B 114 10649Google Scholar

    [32]

    Bandekar J 1992 Biochim. Biophys. Acta 1120 123Google Scholar

    [33]

    Dong Q, Su H L, Zhang D, Cao W, Wang N 2007 Langmuir 23 8108Google Scholar

    [34]

    Kong J, Yu S 2007 Acta Bioch. Bioph. Sin. 39 549Google Scholar

    [35]

    Arami M, Limaee N Y, Mahmoodi N M 2006 Chemosphere 65 1999Google Scholar

    [36]

    Fu Y M, Zhu L Q, Wen J, Xiao H, Liu R 2017 J. Appl. Phys. 121 205301Google Scholar

    [37]

    Mukhamedyarov M A, Grishin S N, Zefirov A L, Palotas A 2009 Pflugers Arch. -Eur. J. Physiol 458 563Google Scholar

    [38]

    Chen P Y, Peng X C, Yu S M 2018 IEEE Trans. Comput. -Aided Design Integr. Circuits Syst. 37 3067Google Scholar

    [39]

    Wang W S, Ren Z Y, Shi Z W, Xiao H, Zeng Y H, Zhu L Q 2022 IEEE Electron Device Lett. 43 737Google Scholar

  • [1] Li Rui, Xu Bang-Lin, Zhou Jian-Fang, Jiang En-Hua, Wang Bing-Hong, Yuan Wu-Jie. A synaptic plasticity induced change in synaptic intensity variation and neurodynamic transition during awakening-sleep cycle. Acta Physica Sinica, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [3] Zhao Zi-Bo, Zhuang Ge, Xie Jin-Lin, Qu Cheng-Ming, Qiang Zi-Wei. Implementation of spectral clustering algorithm for automatic identification of plasma coherence patterns. Acta Physica Sinica, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [4] Liu Qiang, Ni Yao, Liu Lu, Sun Lin, Liu Jia-Qi, Xu Wen-Tao. Artificial synapses based on layered multi-component metal oxides. Acta Physica Sinica, 2022, 71(14): 148501. doi: 10.7498/aps.71.20220303
    [5] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [6] Li Lei, Yan Han, Chen Xiang-Ming. A new method for identifying TE01δ mode during microwave dielectric measurements of low-loss materials. Acta Physica Sinica, 2020, 69(12): 128401. doi: 10.7498/aps.69.20200275
    [7] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [8] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] Xue Xiao-Dan, Wang Mei-Li, Shao Yu-Zhu, Wang Jun-Song. Neural firing rate homeostasis via inhibitory synaptic plasticity. Acta Physica Sinica, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [10] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [11] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [12] Yang Min-Yu, Song Jian-Jun, Zhang Jing, Tang Zhao-Huan, Zhang He-Ming, Hu Hui-Yong. Physical mechanism of uniaxial strain in nano-scale metal oxide semiconductor transistor caused by sin film. Acta Physica Sinica, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [13] Wang Mei-Li, Wang Jun-Song. Dynamical balance between excitation and inhibition of feedback neural circuit via inhibitory synaptic plasticity. Acta Physica Sinica, 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [14] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [15] Li Kai-Yan, Zhao Xing-Qun, Sun Xiao-Han, Wan Sui-Ren. A regular composite feature extraction method for vibration signal pattern recognition in optical fiber link system. Acta Physica Sinica, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [16] Xia Xiao-Fei, Wang Jun-Song. Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study. Acta Physica Sinica, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [17] Hu Yong-Gang, Xia Feng, Xiao Jian-Zhong, Lei Chao, Li Xiang-Dong. Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis. Acta Physica Sinica, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [18] Li Tong, Shang Peng-Jian. A multifractal approach to palmprint recognition. Acta Physica Sinica, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
    [20] LI ZI-RONG, MENG QING-AN, GUAN DI-HUA, WANG GANG. NMR STUDIES ON SELF DIFFUSION COEFFICIENTS OF LITHIUM IONS IN PAN-BASED GEL POLYMER ELECTROLYTES. Acta Physica Sinica, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
Metrics
  • Abstract views:  3473
  • PDF Downloads:  95
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2023
  • Accepted Date:  24 May 2023
  • Available Online:  29 May 2023
  • Published Online:  05 August 2023

/

返回文章
返回