Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Neural firing rate homeostasis via inhibitory synaptic plasticity

Xue Xiao-Dan Wang Mei-Li Shao Yu-Zhu Wang Jun-Song

Citation:

Neural firing rate homeostasis via inhibitory synaptic plasticity

Xue Xiao-Dan, Wang Mei-Li, Shao Yu-Zhu, Wang Jun-Song
PDF
HTML
Get Citation
  • Neural firing rate homeostasis, as an important feature of neural electrical activity, means that the firing rate in brain is maintained in a relatively stable state, and fluctuates around a constant value. Extensive experimental studies have revealed that the firing rate homeostasis is ubiquitous in brain, and provides a base for neural information processing and maintaining normal neurological functions, so that the research on neural firing rate homeostasis is a central problem in the field of neuroscience. Cortical neural network is a highly complex dynamic system with a large number of input disturbance signals and parameter perturbations due to dynamic connection. However, it remains to be further investigated how firing rate homeostasis is established in cortical neural network, furthermore, maintains robustness to these disturbances and perturbations. The feedback neural circuit with recurrent excitatory and inhibitory connection is a typical connective pattern in cortical cortex, and inhibitory synaptic plasticity plays a crucial role in achieving neural firing rate homeostasis. Here, by constructing a feedback neural network with inhibitory spike timing-dependent plasticity (STDP), we conduct a computational research to elucidate the mechanism of neural firing rate homeostasis. The results indicate that the neuronal firing rate can track the target firing rate accurately under the regulation of inhibitory synaptic plasticity, thus achieve firing rate homeostasis. In the face of external disturbances and parameter perturbations, the neuron firing rate deviates transiently from the target firing rate value, and converges to the target firing rate value at a steady state, which demonstrates that the firing rate homeostasis established by the inhibitory synaptic plasticity can maintain strong robustness. Furthermore, the analytical research qualitatively explains the firing rate homeostasis mechanism underlined by inhibitory synaptic plasticity. Finally, the simulations further demonstrate that the learning rate value and the firing rate set point value also exert a quantitative influence on the firing rate homeostasis. Overall, these findings not only gain an insight into the firing rate homeostasis mechanism underlined by inhibitory synaptic plasticity, but also inspire testable hypotheses for future experimental studies.
      Corresponding author: Wang Jun-Song, wjsong2004@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61876132), and Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 15JCYBJC47700).
    [1]

    Gläser C, Joublin F 2011 IEEE T. Auton. Ment. De. 3 285Google Scholar

    [2]

    Hengen K B, Lambo M E, Hooser S D, van Katz D B, Turrigiano G G 2013 Neuron 80 335Google Scholar

    [3]

    Corner M A, Ramakers G J A 1992 Dev. Brain Res. 65 57Google Scholar

    [4]

    Ramakers G J A, Corner M A, Habets A M M C 1990 Exp. Brain Res. 79 157Google Scholar

    [5]

    Ramakers G J A, Galen H V, Feenstra M G P, Corner M A, Boer G J 1994 Int. J. Dev. Neurosci. 12 611Google Scholar

    [6]

    Pol A N V D, Obrietan K, Belousov A 1996 Neuroscience 74 653Google Scholar

    [7]

    Turrigiano G G, Leslie K R, Desai N S, Rutherford L C, Nelson S B 1998 Nature 391 892Google Scholar

    [8]

    Rutherford L C, Nelson S B, Turrigiano G G 1998 Neuron 21 521Google Scholar

    [9]

    Burrone J, O'Byrne M, Murthy V N 2002 Nature 420 414Google Scholar

    [10]

    Turrigiano G G, Nelson S B 2004 Nat. Rev. Neurosci. 5 97Google Scholar

    [11]

    Turrigiano G 2012 CSH Perspect. Biol. 4 a005736Google Scholar

    [12]

    Cannon J, Miller P 2016 J. Neurophysiol. 116 2004Google Scholar

    [13]

    Cannon J, Miller P 2017 J. Math. Neurosc. 7 1Google Scholar

    [14]

    Miller P, Cannon J 2018 Biol. Cybern. 113 47

    [15]

    McClelland J L, McNaughton B L, O'Reilly R C 1995 Psychol. Rev. 102 419Google Scholar

    [16]

    Frankland P W, O'Brien C, Ohno M, Kirkwood A, Silva A J 2001 Nature 411 309Google Scholar

    [17]

    Carcea I, Froemke R C 2013 Prog. Brain. Res. 207 65Google Scholar

    [18]

    Martin S J, Grimwood P D, Morris R G M 2000 Annu. Rev. Neurosci. 23 649Google Scholar

    [19]

    Sanderson J L, Dell'Acqua M L 2011 Neuroscientist 17 321Google Scholar

    [20]

    Yong L, Kauer J A 2010 Synapse 51 1Google Scholar

    [21]

    Haas J S, Thomas N, Abarbanel H D I 2006 J. Neurophysiol. 96 3305Google Scholar

    [22]

    D'Amour J A, Froemke R C 2015 Neuron 86 514Google Scholar

    [23]

    Hartmann K, Bruehl C, Golovko T, Draguhn A 2008 Plos One 3 e2979Google Scholar

    [24]

    Tohru K, Kazumasa Y, Yumiko Y, Crair M C, Yukio K 2008 Neuron 57 905Google Scholar

    [25]

    Stephen G, James R W 2001 Cereb. Cortex 11 37Google Scholar

    [26]

    Luz Y, Shamir M 2012 Plos. Comput. Biol. 8 e1002334Google Scholar

    [27]

    Hennequin G, Agnes E J, Vogels T P 2017 Annu. Revi. Neurosci. 40 557Google Scholar

    [28]

    Park H J, Friston K 2013 Science 342 1238411Google Scholar

    [29]

    Isaacson J S, Massimo S 2011 Neuronv 72 231Google Scholar

    [30]

    Maass W, Joshi P, Sontag E D 2007 Plos Comput. Biol. 3 e165Google Scholar

    [31]

    Jansen B H, Rit V G 1995 Biol. Cybern. 73 357Google Scholar

    [32]

    Chacron M J, André L, Leonard M 2005 Phys. Rev. E 72 051917Google Scholar

    [33]

    Froemke R C, Jones B J 2011 Neurosci. Biobehav. R. 35 2105Google Scholar

    [34]

    王俊松, 徐瑶 2014 物理学报 63 068701Google Scholar

    Wang J S, Xu Y 2014 Acta Phys. Sin. 63 068701Google Scholar

    [35]

    王美丽, 王俊松 2015 物理学报 64 108701Google Scholar

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701Google Scholar

    [36]

    Vogels T P, Abbott L F 2009 Nat. Neurosci. 12 483Google Scholar

    [37]

    Stepp N, Plenz D, Srinivasa N 2015 Plos Comput. Biol. 11 e1004043Google Scholar

    [38]

    Vogels T P, Sprekeler H, Zenke F, Clopath C, Gerstner W 2011 Science 334 1569Google Scholar

    [39]

    Maass W 2014 P. IEEE 102 860Google Scholar

    [40]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 183Google Scholar

    [41]

    Garrett D D, Mcintosh A R, Grady C L 2011 Nat. Rev. Neurosci. 12 612Google Scholar

    [42]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 415Google Scholar

    [43]

    Turrigiano G G 2008 Cell 135 422Google Scholar

    [44]

    Marder E, Tang L S 2010 Neuron 66 161Google Scholar

    [45]

    Sharon B, Dickman D K, Davis G W 2010 Neuron 66 220Google Scholar

  • 图 1  反馈神经回路模型结构

    Figure 1.  Structure of the feedback neural network.

    图 2  抑制性突触可塑性(STDP)调节规则示意图

    Figure 2.  The regulation rule of inhibitory synaptic plasticity (STDP).

    图 3  目标放电率为5 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Figure 3.  Firing rate homeostasis with the target firing rate equal to 5 Hz: (a) Neural membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 4  目标放电率为10 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Figure 4.  Firing rate homeostasis with the target firing rate equal to 10 Hz: (a) Neuronal membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 5  目标放电率为20 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Figure 5.  Firing rate homeostasis with the target firing rate equal to 20 Hz: (a) Neuronal membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 6  目标放电率为50 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Figure 6.  Firing rate homeostasis with the target firing rate equal to 50 Hz: (a) Neuronal membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 7  神经元实际放电率跟踪目标放电率的总体情况

    Figure 7.  The simulation firing rate and target firing rate.

    图 8  噪声干扰下的神经元放电率鲁棒性 (a)噪声干扰信号; (b)神经元膜电位; (c)神经元平均放电率曲线; (d)抑制性突触权重变化曲线

    Figure 8.  The robustness of neural firing rate homeostasis under noise disturbances: (a) The noise signal; (b) neuronal membrane potential; (c) the average firing rate; (d) the strength of inhibitory synapse.

    图 9  参数摄动下的放电率自稳态鲁棒性 (a)参数摄动信号; (b)神经元膜电位; (c)神经元平均放电率曲线; (d)抑制性突触权重变化曲线

    Figure 9.  The robustness of neural firing rate homeostasis under parameter perturbation: (a) The parameter perturbation signal; (b) neuronal membrane potential; (c) the average firing rate; (d) the strength of inhibitory synapse.

    图 10  参数干扰时有无抑制性突触可塑性两种情况下的神经元平均放电率自稳态特性 (a)参数摄动信号; (b)神经元膜电位; (c)神经元平均放电率曲线; (d)抑制性突触权重变化曲线

    Figure 10.  The firing rate characteristics with and without inhibitory synaptic plasticity under parameter perturbation: (a) The parameter perturbation signal; (b) neural membrane potential; (c) the average firing rate; (d) the strength of inhibitory synapse.

    图 11  学习率对放电率自稳态的影响 (a)参数摄动信号; (b)不同学习率时的神经元平均放电率曲线

    Figure 11.  The effect of learning rate on neural firing rate homeostasis: (a) The parameter perturbation signal; (b) the firing rate with different learning rates.

    图 12  神经元实际放电率极限值

    Figure 12.  The limitation value of neural firing rate.

    图 13  目标放电率的确定[43]

    Figure 13.  Establishing a set point for the neuronal firing rate[43].

    表 1  神经网络结构相关参数取值

    Table 1.  Parameters values of the neural feedback model structure.

    参数描述取值
    NE兴奋性神经元规模800
    NI抑制性神经元规模200
    PEEE-E的连接概率0.2
    PEIE-I的连接概率0.4
    PIEI-E的连接概率0.4
    PIII-I的连接概率0.4
    DownLoad: CSV

    表 2  神经元模型各参数取值

    Table 2.  Parameters values of LIF neuron model.

    参数取值单位
    ${\tau _{\rm{m}}}$20ms
    ${V^{{\rm{rest}}}}$–60mV
    ${V_{{\rm{th}}}}$–50mV
    ${V^{\rm{E}}}$0mV
    ${V^{\rm{I}}}$–70mV
    ${g^{{\rm{leak}}}}$10nS
    DownLoad: CSV

    表 3  突触模型参数取值

    Table 3.  Parameters values of synapse model.

    参数取值单位
    ${\tau _{\rm{E}}}$5ms
    ${\tau _{\rm{I}}}$10ms
    ${\bar g^{\rm{E}}}$140pS
    ${\bar g^{\rm{I}}}\normalsize$350pS
    DownLoad: CSV

    表 4  抑制性突触可塑性的参数取值

    Table 4.  Parameters values of inhibitory synaptic plasticity.

    参数描述取值
    ${W_{ij}}^{}$抑制性突触权重0
    ${\tau _{{\rm{STDP}}}}$可塑性时间常数20
    $\eta $学习率0.005
    $\alpha $抑制因子0.12
    ${\rho _0}\normalsize$目标放电率
    DownLoad: CSV
  • [1]

    Gläser C, Joublin F 2011 IEEE T. Auton. Ment. De. 3 285Google Scholar

    [2]

    Hengen K B, Lambo M E, Hooser S D, van Katz D B, Turrigiano G G 2013 Neuron 80 335Google Scholar

    [3]

    Corner M A, Ramakers G J A 1992 Dev. Brain Res. 65 57Google Scholar

    [4]

    Ramakers G J A, Corner M A, Habets A M M C 1990 Exp. Brain Res. 79 157Google Scholar

    [5]

    Ramakers G J A, Galen H V, Feenstra M G P, Corner M A, Boer G J 1994 Int. J. Dev. Neurosci. 12 611Google Scholar

    [6]

    Pol A N V D, Obrietan K, Belousov A 1996 Neuroscience 74 653Google Scholar

    [7]

    Turrigiano G G, Leslie K R, Desai N S, Rutherford L C, Nelson S B 1998 Nature 391 892Google Scholar

    [8]

    Rutherford L C, Nelson S B, Turrigiano G G 1998 Neuron 21 521Google Scholar

    [9]

    Burrone J, O'Byrne M, Murthy V N 2002 Nature 420 414Google Scholar

    [10]

    Turrigiano G G, Nelson S B 2004 Nat. Rev. Neurosci. 5 97Google Scholar

    [11]

    Turrigiano G 2012 CSH Perspect. Biol. 4 a005736Google Scholar

    [12]

    Cannon J, Miller P 2016 J. Neurophysiol. 116 2004Google Scholar

    [13]

    Cannon J, Miller P 2017 J. Math. Neurosc. 7 1Google Scholar

    [14]

    Miller P, Cannon J 2018 Biol. Cybern. 113 47

    [15]

    McClelland J L, McNaughton B L, O'Reilly R C 1995 Psychol. Rev. 102 419Google Scholar

    [16]

    Frankland P W, O'Brien C, Ohno M, Kirkwood A, Silva A J 2001 Nature 411 309Google Scholar

    [17]

    Carcea I, Froemke R C 2013 Prog. Brain. Res. 207 65Google Scholar

    [18]

    Martin S J, Grimwood P D, Morris R G M 2000 Annu. Rev. Neurosci. 23 649Google Scholar

    [19]

    Sanderson J L, Dell'Acqua M L 2011 Neuroscientist 17 321Google Scholar

    [20]

    Yong L, Kauer J A 2010 Synapse 51 1Google Scholar

    [21]

    Haas J S, Thomas N, Abarbanel H D I 2006 J. Neurophysiol. 96 3305Google Scholar

    [22]

    D'Amour J A, Froemke R C 2015 Neuron 86 514Google Scholar

    [23]

    Hartmann K, Bruehl C, Golovko T, Draguhn A 2008 Plos One 3 e2979Google Scholar

    [24]

    Tohru K, Kazumasa Y, Yumiko Y, Crair M C, Yukio K 2008 Neuron 57 905Google Scholar

    [25]

    Stephen G, James R W 2001 Cereb. Cortex 11 37Google Scholar

    [26]

    Luz Y, Shamir M 2012 Plos. Comput. Biol. 8 e1002334Google Scholar

    [27]

    Hennequin G, Agnes E J, Vogels T P 2017 Annu. Revi. Neurosci. 40 557Google Scholar

    [28]

    Park H J, Friston K 2013 Science 342 1238411Google Scholar

    [29]

    Isaacson J S, Massimo S 2011 Neuronv 72 231Google Scholar

    [30]

    Maass W, Joshi P, Sontag E D 2007 Plos Comput. Biol. 3 e165Google Scholar

    [31]

    Jansen B H, Rit V G 1995 Biol. Cybern. 73 357Google Scholar

    [32]

    Chacron M J, André L, Leonard M 2005 Phys. Rev. E 72 051917Google Scholar

    [33]

    Froemke R C, Jones B J 2011 Neurosci. Biobehav. R. 35 2105Google Scholar

    [34]

    王俊松, 徐瑶 2014 物理学报 63 068701Google Scholar

    Wang J S, Xu Y 2014 Acta Phys. Sin. 63 068701Google Scholar

    [35]

    王美丽, 王俊松 2015 物理学报 64 108701Google Scholar

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701Google Scholar

    [36]

    Vogels T P, Abbott L F 2009 Nat. Neurosci. 12 483Google Scholar

    [37]

    Stepp N, Plenz D, Srinivasa N 2015 Plos Comput. Biol. 11 e1004043Google Scholar

    [38]

    Vogels T P, Sprekeler H, Zenke F, Clopath C, Gerstner W 2011 Science 334 1569Google Scholar

    [39]

    Maass W 2014 P. IEEE 102 860Google Scholar

    [40]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 183Google Scholar

    [41]

    Garrett D D, Mcintosh A R, Grady C L 2011 Nat. Rev. Neurosci. 12 612Google Scholar

    [42]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 415Google Scholar

    [43]

    Turrigiano G G 2008 Cell 135 422Google Scholar

    [44]

    Marder E, Tang L S 2010 Neuron 66 161Google Scholar

    [45]

    Sharon B, Dickman D K, Davis G W 2010 Neuron 66 220Google Scholar

  • [1] Li Yun-Heng, Yu Ke, Zhu Tian-Yu, Yu Tong, Shan Si-Chao, Gu Ya-Zhou, Li Zhi-Tong. Optical bistability in topological layered structure and its application in photonic neural network. Acta Physica Sinica, 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [2] Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin. Robustness paradox of cascading dynamics in interdependent networks. Acta Physica Sinica, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [4] Wang Yu-Kun, Li Ze-Yang, Xu Kang, Wang Zi-Zheng. Self-testing criteria for preparing-measuring qubit system. Acta Physica Sinica, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [5] Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le. Study on avalanche ruggedness of high voltage IGBTs. Acta Physica Sinica, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [6] Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou. Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel. Acta Physica Sinica, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [7] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [8] Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang. The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study. Acta Physica Sinica, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [9] Wang Mei-Li, Wang Jun-Song. Dynamical balance between excitation and inhibition of feedback neural circuit via inhibitory synaptic plasticity. Acta Physica Sinica, 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [10] Duan Dong-Li, Wu Xiao-Yue. Cascading failure of scale-free networks based on a tunable load redistribution model. Acta Physica Sinica, 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [11] Chen Shi-Ming, Zou Xiao-Qun, Lü Hui, Xu Qing-Gang. Research on robustness of interdependent network for suppressing cascading failure. Acta Physica Sinica, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [12] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [13] Zhou Wu-Jie, Yu Mei, Yu Si-Min, Jiang Gang-Yi, Ge Ding-Fei. A zero-watermarking algorithm of stereoscopic image based on hyperchaotic system. Acta Physica Sinica, 2012, 61(8): 080701. doi: 10.7498/aps.61.080701
    [14] Miao Zhi-Qiang, Wang Yao-Nan. Robust adaptive radial wavelet neural network control for chaotic systems using backstepping design. Acta Physica Sinica, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [15] Zhao Long. Robust inertial terrain aided navigation algorithm. Acta Physica Sinica, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [16] Wang Jiao-Jiao, Yan Hua, Wei Ping. Anticipating projective response in coupled dynamical systems. Acta Physica Sinica, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [17] Wen Shu-Huan, Yuan Jun-Ying. Force control of uncertain robot based on the passivity. Acta Physica Sinica, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [18] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [19] Zou Lu-Juan, Wang Bo, Feng Jiu-Chao. A digital watermarking algorithm based on chaos and fractional Fourier transformation. Acta Physica Sinica, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [20] Gong Li-Hua. Study of chaos control based on adaptive pulse perturbation. Acta Physica Sinica, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
Metrics
  • Abstract views:  10722
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2018
  • Accepted Date:  28 January 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回