-
The traditional terrain contour matching (TERCOM) algorithm has worse reliability when velocity error or course error is larger. The extend Kalman filtering (EKF) algorithm based BUAA inertial terrain aided navigation (BITAN) algorithm fails to correctly position, leading to a decline of robustness when large initial position error or altimeter noise error occurs. In this paper, we introduce a Robust BUAA inertial terrain aided navigation (RBITAN) algorithm, which is an improved algorithm of BITAN. In the RBITAN algorithm a searching mode approach is designed by the statistic properties of mean absolute difference algorithm, mean square difference algorithm and cross correlation algorithm. The RBITAN gathers the advantages of both the TERCOM algorithm and the BITAN algorithm, and it adopts EKF based BITAN algorithm as the tracking approach. The algorithm is verified by both real digital altitude model and flight-test data. Compared with the BITAN algorithm, the RBITAN algorithm is robust, for it can achieve accurate positioning and tolerate large initial position error or altimeter noise error.
-
Keywords:
- geophysical field navigation /
- traditional terrain contour matching /
- BUAA inertial terrain aided navigation /
- robustness
[1] Qiu Z H 1999 Navigation 3 1 (in Chinese) [邱致和 1999 导航 3 1]
[2] Vadlamani A K Ph. D. Dissertation (Ohio: Ohio University)
[3] Golden J P 1980 SPIE 238 10
[4] Priestley N 1999 IEEE Position Location and Navigation Symposium (USA: IEEE) p482
[5] Boozer D D, Lau M K, Fellerhoff J R 1985 IEEE National Aerospace and Electronics Conference (USA: IEEE) p351
[6] Jeff H 1990 IEEE Position Location and Navigation Symposium (USA: IEEE) p616
[7] Feng Q T 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [冯庆堂 2004 博士学位论文 (长沙:国防科学技术大学)]
[8] Chen Z 1991 IEEE Transaction on Industrial Electronics 36 491
[9] Chen Z, Yu P J, Yang H 1993 Technology Reference of Chinese Aviation 1 (in Chinese) [陈哲, 余培军, 杨慧 1993 中国航空科技文献 1]
[10] Pei Y B, Chen Z 1996 IEEE Industrial Electronics, Control, and Instrumentationm (USA: IEEE) p1675
[11] Xie J C, Zhao R C, Xia R 2007 The Eighth International Conference on Electronic Measurement and Instruments (USA: IEEE) p145
[12] Cowie M, Wilkinson N, Powlesland R 2008 IEEE Location and Navigation Symposium (USA: IEEE) p1219
[13] Wu K, Zhao L 2010 Piezoelectrics and Acoustooptics 32 754 (in Chinese) [吴康, 赵龙 2010 压电与声光 32 754]
[14] Yuan X , Yu J X, Chen Z 1993 Navigation System (Beijing: Aviation Industry Press) p205 (in Chinese) [袁信, 俞济祥, 陈哲 1993 导航系统 (北京:航空工业出版社) 第205页]
-
[1] Qiu Z H 1999 Navigation 3 1 (in Chinese) [邱致和 1999 导航 3 1]
[2] Vadlamani A K Ph. D. Dissertation (Ohio: Ohio University)
[3] Golden J P 1980 SPIE 238 10
[4] Priestley N 1999 IEEE Position Location and Navigation Symposium (USA: IEEE) p482
[5] Boozer D D, Lau M K, Fellerhoff J R 1985 IEEE National Aerospace and Electronics Conference (USA: IEEE) p351
[6] Jeff H 1990 IEEE Position Location and Navigation Symposium (USA: IEEE) p616
[7] Feng Q T 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [冯庆堂 2004 博士学位论文 (长沙:国防科学技术大学)]
[8] Chen Z 1991 IEEE Transaction on Industrial Electronics 36 491
[9] Chen Z, Yu P J, Yang H 1993 Technology Reference of Chinese Aviation 1 (in Chinese) [陈哲, 余培军, 杨慧 1993 中国航空科技文献 1]
[10] Pei Y B, Chen Z 1996 IEEE Industrial Electronics, Control, and Instrumentationm (USA: IEEE) p1675
[11] Xie J C, Zhao R C, Xia R 2007 The Eighth International Conference on Electronic Measurement and Instruments (USA: IEEE) p145
[12] Cowie M, Wilkinson N, Powlesland R 2008 IEEE Location and Navigation Symposium (USA: IEEE) p1219
[13] Wu K, Zhao L 2010 Piezoelectrics and Acoustooptics 32 754 (in Chinese) [吴康, 赵龙 2010 压电与声光 32 754]
[14] Yuan X , Yu J X, Chen Z 1993 Navigation System (Beijing: Aviation Industry Press) p205 (in Chinese) [袁信, 俞济祥, 陈哲 1993 导航系统 (北京:航空工业出版社) 第205页]
Catalog
Metrics
- Abstract views: 13634
- PDF Downloads: 892
- Cited By: 0