Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

General theory of quantum holography based on two-photon Interference

Xu Yao-Kun Sun Shi-Hai Zeng Yao-Yuan Yang Jun-Gang Sheng Wei-Dong Liu Wei-Tao

Citation:

General theory of quantum holography based on two-photon Interference

Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao
PDF
HTML
Get Citation
  • As a kind of quantum phenomenon, Hong-Ou-Mandel (HOM) interference is more robust against phase noise. Because of this feature, robust quantum holography emerges, through which wave function of interested photon can be retrieved according to HOM interference pattern. For better understanding and developing this method, we derive a theoretical framework of robust HOM holography. In the quantum holography scheme, test state and reference state interfere at beam splitter (BS). Then, degree of freedom (DOF) resolved detections (such as spatial resolved detection, temporal resolved detection or spectrum resolved detection) are used at the BS output ports, respectively. Based on the single photon detection results, the DOF resolved coincidence counts are postselected, producing interference patterns. The information of the test states is retrieved from the patterns. According to different test states and reference states, four combinations are analysed, including measuring the wave function of single photon state by using standard single photon state or coherent state and measuring the wave function of coherent state through using standard single photon state or coherent state. In all cases, information of the test states is reflected in normalized second-order correlation function or interference patterns in similar forms. Specially, the wave function of test states can be directly retrieved from the interference patterns, with no complex algorithm required. Besides, phase noise from environment has no influence on this kind quantum holography. Comparison between traditional holography and quantum holography is made and analysed.
      Corresponding author: Xu Yao-Kun, yaokun.xu@nudt.edu.cn ; Liu Wei-Tao, wtliu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62001484, 62171458) and the Research Program of National University of Defense Technology, China (Grant No. ZK21-11).
    [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    Mandel L 1999 Rev. Mod. Phys. 71 S274Google Scholar

    [3]

    Kaplan A E K , Krajewska C J, Proppe A H, et al. 2023 Nat. Photonics 17 775

    [4]

    Lopes R, Imanaliev A, Aspect A, Cheneau M, Boiron D, Westbrook C I 2015 Nature 520 66Google Scholar

    [5]

    Kobayashi T, Ikuta R, Yasui S, et al. 2016 Nat. Photonics 10 441Google Scholar

    [6]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [7]

    Liu Y, Chen T Y, Wang L J, et al. 2013 Phys. Rev. Lett. 111 130502Google Scholar

    [8]

    Tang Y L, Yin H L, Chen S J, et al. 2014 Phys. Rev. Lett. 113 190501Google Scholar

    [9]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [10]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [11]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [12]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [13]

    Edamatsu K, Shimizu R, Itoh T 2002 Phys. Rev. Lett. 89 213601Google Scholar

    [14]

    Chrapkiewicz R, Jachura M, Banaszek K, Wasilewski W 2016 Nat. Photonics 10 576Google Scholar

    [15]

    Xu Y K, Sun S H, Liu W T, Liu J Y, Chen P X 2019 Phys. Rev. A 100 042317Google Scholar

    [16]

    Thiel V, Davis A, Sun K, D’Ornellas P, Jin X M, Smith B 2020 Opt. Express 28 19515

    [17]

    Orre V V, Goldschmidt E A, Deshpande A, et al. 2019 Phys. Rev. Lett. 123 123603Google Scholar

    [18]

    Thekkadath G S, Bell B A, Patel R B, Kim M S, Walmsley I A 2022 Phys. Rev. Lett. 128 023601Google Scholar

    [19]

    Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, et al. 2015 Opt. Express 23 28836Google Scholar

    [20]

    Qin Z Z, Prasad A S, Brannan T, MacRae A, Lezama A, Lvovsky A I 2015 Light Sci. Appl. 4 e298Google Scholar

    [21]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299Google Scholar

    [22]

    Anis A, Lvovsky A I 2012 New J. Phys. 14 105021Google Scholar

  • 图 1  Hong-Ou-Mandel干涉装置图 (a)一般Hong-Ou-Mandel装置图. 量子态分别入射分束器的两个输入口$ {\rm{a}}_1 $$ {\rm{a}}_2 $, 发生干涉后, 通过两个单光子探测器在输出口$ {\rm{b}}_1 $$ {\rm{b}}_2 $进行测量. 根据单光子探测结果后选择出符合测量结果. (b)基于Hong-Ou-Mandel干涉的量子全息. 两个输入的量子态发生干涉后, 在输出口$ {\rm{b}}_1 $$ {\rm{b}}_2 $做自由度内可分辨的单光子测量, 并通过后选择筛选出符合测量结果

    Figure 1.  Setup of Hong-Ou-Mandel interference: (a) General Hong-Ou-Mandel setup. The two input states enter input ports of beam splitter (BS) $ {\rm{a}}_1 $ and $ {\rm{a}}_2 $, respectively. After passing through the BS, the photon is recorded by single photon detectors at output ports ${\rm{ b}}_1 $ and $ {\rm{b}}_2 $, respectively. According to the single photon detection results, the coincidence counts are postselected. (b) Quantum holography based on Hong-Ou-Mandel interference. After interference at the BS, degree of freedom (DOF) resolved detections are applied at the output ports $ {\rm{b}}_1 $ and $ {\rm{b}}_2 $, respectively. According to the single photon detection results, the DOF resolved coincidence counts are postselected

    图 2  不同待测态和参考态下的归一化二阶关联函数值分布 (a)相位; (b)振幅; (c)利用单光子态测量单光子态波函数的全息图; (d)利用相干态测量单光子态波函数的全息图; (e)利用单光子态测量相干态波函数的全息图; (f)利用相位随机相干态测量相干态波函数的全息图

    Figure 2.  Ideal normalized second-order correlation function of different quantum states: (a) Phase; (b) amplitude; (c) hologram of single photon state wave function measurement using single photon state; (d) hologram of single photon state wave function measurement using coherent state; (e) hologram of coherent state wave function measurement using single photon state; (f) hologram of coherent state wave function measurement using random phase coherent state.

    表 1  Hong-Ou-Mandel量子全息的4种情况

    Table 1.  Four combinations in Hong-Ou-Mandel Holography.

    待测态 参考态 归一化的二阶关联函数
    $\left| {\psi}_{\text{test}} \right > =\displaystyle\int{{\psi}_{\text{test}}(q)}\left|{1}_{q}\right > {\rm{d}}q $ $\left| { \psi}_{ \text{ref} } \right > =\displaystyle\int { { \psi }_{ \text{ref} }(q) } \left| { 1 }_{ q } \right > \text{d}q $ $\dfrac{T^2\left(q_1\right)+T^2\left(q_2\right)-2 T\left(q_1\right) T\left(q_2\right) \cos \left[\phi\left(q_1\right)-\phi\left(q_2\right)\right]}{\left[T^2\left(q_1\right)+1\right]\left[T^2\left(q_2\right)+1\right]} $
    $\left| {\psi}_{\text{test}} \right > =\displaystyle\int{{\psi}_{\text{test}}(q)}\left|{1}_{q}\right > {\rm{d}}q $ $\left| { \psi }_{ \text{ref} } \right > = \displaystyle\prod\nolimits_{ q }^{ }{ \left| { \alpha_ \text{ref} (q) } \right > } $ $1-\dfrac { T^{2}(q_{1})T^{2}(q_{2})+2 T(q_{1})T(q_{2})\cos \left[\phi\left(q_1\right)-\phi\left(q_2\right)\right]}{ ({T^{2}(q_{1})+1})(T^{2}(q_{2})+1)} $
    $\left| { \psi }_{ \text{test} } \right > = \displaystyle\prod\nolimits _{ q }^{ }{ \left| { \beta_ \text{test} (q) } \right > } $ $\left| { \psi}_{ \text{ref} } \right > =\displaystyle\int { { \psi }_{ \text{ref} }(q) } \left| { 1 }_{ q } \right > \text{d}q $ $1-\dfrac { 2 T(q_{1})T(q_{2})\cos \left[\phi\left(q_1\right)-\phi\left(q_2\right)\right]+1}{ ({T^{2}(q_{1})+1})(T^{2}(q_{2})+1)} $
    $\left| { \psi }_{ \text{test} } \right > = \displaystyle\prod\nolimits_{ q }^{ }{ \left| { \beta_ \text{test} (q) } \right > } $ $\left| { \psi }_{ \text{ref} } \right > =\displaystyle\prod\nolimits _{q }^{ }{ \left| { \alpha_ \text{ref} (q) } \right > } $ $1-\dfrac { 2 T({ q }_{ 1 })T({ q }_{ 2 }) \text{cos}[\phi ({ q }_{ 1 })-\phi ({ q }_{ 2 })]}{ ({ { T }^{ 2 }({ q }_{ 1 }) }+1)({ { T }^{ 2 }({ q }_{ 2 }) }+1) } $
    DownLoad: CSV
  • [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    Mandel L 1999 Rev. Mod. Phys. 71 S274Google Scholar

    [3]

    Kaplan A E K , Krajewska C J, Proppe A H, et al. 2023 Nat. Photonics 17 775

    [4]

    Lopes R, Imanaliev A, Aspect A, Cheneau M, Boiron D, Westbrook C I 2015 Nature 520 66Google Scholar

    [5]

    Kobayashi T, Ikuta R, Yasui S, et al. 2016 Nat. Photonics 10 441Google Scholar

    [6]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [7]

    Liu Y, Chen T Y, Wang L J, et al. 2013 Phys. Rev. Lett. 111 130502Google Scholar

    [8]

    Tang Y L, Yin H L, Chen S J, et al. 2014 Phys. Rev. Lett. 113 190501Google Scholar

    [9]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [10]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [11]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [12]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [13]

    Edamatsu K, Shimizu R, Itoh T 2002 Phys. Rev. Lett. 89 213601Google Scholar

    [14]

    Chrapkiewicz R, Jachura M, Banaszek K, Wasilewski W 2016 Nat. Photonics 10 576Google Scholar

    [15]

    Xu Y K, Sun S H, Liu W T, Liu J Y, Chen P X 2019 Phys. Rev. A 100 042317Google Scholar

    [16]

    Thiel V, Davis A, Sun K, D’Ornellas P, Jin X M, Smith B 2020 Opt. Express 28 19515

    [17]

    Orre V V, Goldschmidt E A, Deshpande A, et al. 2019 Phys. Rev. Lett. 123 123603Google Scholar

    [18]

    Thekkadath G S, Bell B A, Patel R B, Kim M S, Walmsley I A 2022 Phys. Rev. Lett. 128 023601Google Scholar

    [19]

    Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, et al. 2015 Opt. Express 23 28836Google Scholar

    [20]

    Qin Z Z, Prasad A S, Brannan T, MacRae A, Lezama A, Lvovsky A I 2015 Light Sci. Appl. 4 e298Google Scholar

    [21]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299Google Scholar

    [22]

    Anis A, Lvovsky A I 2012 New J. Phys. 14 105021Google Scholar

  • [1] Gao Yan-Li, Xu Wei-Nan, Zhou Jie, Chen Shi-Ming. Analysis of seepage behaviour in binary two-layer coupled networks. Acta Physica Sinica, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin. Robustness paradox of cascading dynamics in interdependent networks. Acta Physica Sinica, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] Wang Yu-Kun, Li Ze-Yang, Xu Kang, Wang Zi-Zheng. Self-testing criteria for preparing-measuring qubit system. Acta Physica Sinica, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [4] Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le. Study on avalanche ruggedness of high voltage IGBTs. Acta Physica Sinica, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [5] Zhai Yi-Wei, Li Wang. SSA-BP network model based Hong-Ou-Mandel interference delay measurement and its application in quantum gyroscope. Acta Physica Sinica, 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [6] Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou. Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel. Acta Physica Sinica, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [7] Tian Ying, Cai Wu-Hao, Yang Zi-Xiang, Chen Feng, Jin Rui-Bo, Zhou Qiang. Hong-Ou-Mandel interference of entangled photons generated under pump-tight-focusing condition. Acta Physica Sinica, 2022, 71(5): 054201. doi: 10.7498/aps.71.20211783
    [8] Mao Li-Jun, Zhang Yun-Bo. The dynamics of the bipartite and tripartite entanglement in the three-qubit Dicke model. Acta Physica Sinica, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [9] Li Yin-Hai, Xu Zhao-Huai, Wang Shuang, Xu Li-Xin, Zhou Zhi-Yuan, Shi Bao-Sen. Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources. Acta Physica Sinica, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [10] Gao Yan-Li, Chen Shi-Ming. A global homogenizing coupled pattern of interdependent networks. Acta Physica Sinica, 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [11] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [12] Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang. The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study. Acta Physica Sinica, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [13] Chen Shi-Ming, Zou Xiao-Qun, Lü Hui, Xu Qing-Gang. Research on robustness of interdependent network for suppressing cascading failure. Acta Physica Sinica, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [14] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [15] Miao Zhi-Qiang, Wang Yao-Nan. Robust adaptive radial wavelet neural network control for chaotic systems using backstepping design. Acta Physica Sinica, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [16] Zhou Wu-Jie, Yu Mei, Yu Si-Min, Jiang Gang-Yi, Ge Ding-Fei. A zero-watermarking algorithm of stereoscopic image based on hyperchaotic system. Acta Physica Sinica, 2012, 61(8): 080701. doi: 10.7498/aps.61.080701
    [17] Zhao Long. Robust inertial terrain aided navigation algorithm. Acta Physica Sinica, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [18] Wen Shu-Huan, Yuan Jun-Ying. Force control of uncertain robot based on the passivity. Acta Physica Sinica, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [19] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [20] Zou Lu-Juan, Wang Bo, Feng Jiu-Chao. A digital watermarking algorithm based on chaos and fractional Fourier transformation. Acta Physica Sinica, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
Metrics
  • Abstract views:  2534
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2023
  • Accepted Date:  06 October 2023
  • Available Online:  26 October 2023
  • Published Online:  05 November 2023

/

返回文章
返回