搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉

李银海 许昭怀 王双 许立新 周志远 史保森

引用本文:
Citation:

两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉

李银海, 许昭怀, 王双, 许立新, 周志远, 史保森

Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources

Li Yin-Hai, Xu Zhao-Huai, Wang Shuang, Xu Li-Xin, Zhou Zhi-Yuan, Shi Bao-Sen
PDF
导出引用
  • 独立光子源的干涉是实现复杂量子体系应用(比如多光子纠缠态产生和量子隐形传态等)的核心技术.利用100 GHz密集波分复用技术,实现了1.55 m全光纤多通道独立纠缠光子源的Hong-Ou-Mandel干涉,在不去除暗符合(随机符合计数)的情况下,可见度为53.2%8.4%,去除暗符合可见度可达到82.9%5.3%.给出了关于色散位移光纤中基于自发四波混频过程产生的单光子光谱纯度严格的理论描述,模拟了抽运脉冲宽度和滤波器带宽对单光子光谱纯度的影响,并给出了理论上的最佳条件(最佳的抽运脉冲宽度为8 ps,高斯滤波器带宽为40 GHz及以下).在测量Hong-Ou-Mandel干涉之前,先测量了液氮冷却状态下的色散位移光纤关联光子源的符合和随机符合比率,在抽运功率为23 W的情况下,最大比率可以达到131.Hong-Ou-Mandel干涉在高精度光学测量、测量装置无关的量子密钥分配等应用中扮演着极为重要的角色.
    Interference between independent photon sources is the key technique to realize complex quantum systems for more sophisticated applications such as multi-photon entanglement generation and quantum teleportation. Here, we report Hong-Ou-Mandel interference (HOMI) between two independent 1.55 m all-fiber photon pair sources over two 100 GHz dense wave division multiplexing (DWDM) channels, whose visibility reaches 53.2%8.4% (82.9%5.3%) without (with) back ground counts subtracted. In addition, we theoretically describe in detail the single photon spectral purity of the photon source generated in dispersion shifted fiber (DSF), simulate the influences of the pulse width and filter bandwidth on the purity, and obtain the optimized condition. The optimized pump pulse width is 8 ps and filter bandwidth is about 40 GHz or less. A home-made 1550.1 nm mode-locked fiber laser source, whose pulse width and repetition rate are 25 ps and 27.9 MHz respectively, acts as a pump of photon source. A tunable attenuator is used to adjust the pump power of the photon source, and the broad band background fluorescence photons are filtered out by cascade 100 GHz DWDM filters. The clean pump beam is divided into two equal parts by the 50 : 50 optical coupler to pump two 300 m DSFs (cooled by liquid nitrogen) to generate independent photon sources. Then the strong pump beam and noise photon from Raman scattering in orthogonal polarization are removed by 2 groups of 200 GHz DWDM filters and fiber polarization rotator and polarizer. Then two 100 GHz DWDMs are used for separating photons at correlated channel pairs. The relative delay between the two independent photons is adjusted by tunable fiber delay line. Photons from the same channels are combined in a second beam splitter for interference, and the other two photons are used as trigger signals. The two triggered photons are detected by two free running InGaAs avalanched single photon detectors (APD1, APD4, ID Quanta, ID220, 20% detection efficiency, 3 s dead time, dark count rate 4k cps), and the outputs of detectors APD1 and APD4 are used to trigger two single-photon detectors running in the gated mode (APD2, APD3, Qasky, Hefei, China, 100 MHz, free gating single photon detectors, 20% detection efficiency, dark count probability 410-5 per gate) for twophoton coincidence measurement. Detection output signals from APD2 and APD3 are sent to our coincidence count device (Pico quanta, TimeHarp 260, 1.6 ns coincidence window) for four-photon coincidence measurement. Before measuring the HOMI, we obtain a maximum-coincidence-to-accidental-coincidence ratio (CAR) of 131 by cooling the fiber in liquid nitrogen when the pump power is 23 W. There are a few remarks we want to point out.Firstly, the photon sources are not operated at the optimized pump pulse width for pure single photon generation, but narrow band 100 GHz filters are used in the experiments to increase the purity of the sources. Secondly, single photon detectors used in our experiment have lower detection efficiency and much higher dark counts than nano-wire single photon detectors, if we have high-performance nano-wire single photon detector, experimental results will be greatly improved due to the four-fold coincidences and dark coincidences scaling quadruplicate with the detection efficiency and dark count probability of a single detector. Thirdly, we use relatively high pump power for each DSF (0.12 mW) to reduce measurement time for photon coincidence, which will lead to a very poor raw visibility certainly. Finally, though only a 100 GHz channel pair is used in our experiment, we can use other channels for multiplexing such interference processes to improve the channel capacity in future quantum communication tasks theoretically. Our study shows greatly promising integrated optical elements for future scalable quantum information processing.
      通信作者: 许立新, xulixin@ustc.edu.cn;zyzhouphy@ustc.edu.cn ; 周志远, xulixin@ustc.edu.cn;zyzhouphy@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174271,61275115,61435011,61525504)和中央高校基本科研业务费专项资金(批准号:WK2030380009)资助的课题.
      Corresponding author: Xu Li-Xin, xulixin@ustc.edu.cn;zyzhouphy@ustc.edu.cn ; Zhou Zhi-Yuan, xulixin@ustc.edu.cn;zyzhouphy@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174271, 61275115, 61435011, 61525504) and the Fundamental Research Funds for the Central Universities, China (Grant No. WK2030380009).
    [1]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photon. 9 641

    [4]

    Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C, Han Z F 2015 Phys. Rev. Lett. 115 160502

    [5]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879

    [6]

    Tan Y G, Liu Q 2016 Chin. Phys. Lett. 33 090303

    [7]

    Ma H X, Bao W S, Li H W, Chou C 2016 Chin. Phys. B 25 080309

    [8]

    Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502

    [9]

    Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C, Walmsley I A 2008 Phys. Rev. Lett. 100 133601

    [10]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011

    [11]

    Tanida M, Okamoto R, Takeuchi S 2012 Opt. Express 20 15275

    [12]

    Kim Y H, Grice W P 2005 Opt. Lett. 30 908

    [13]

    Wasilewski W, Wasylczyk P, Kolenderski P, Banaszek K, Radzewicz C 2006 Opt. Lett. 31 1130

    [14]

    Fulconis J, Alibart O, O'Brien J L, Wadsworth W J, Rarity J G 2007 Phys. Rev. Lett. 99 120501

    [15]

    Halder M, Fulconis J, Cemlyn B, Clark A, Xiong C, Wadsworth W J, Rarity J G 2009 Opt. Express 17 4670

    [16]

    Soller C, Cohen O, Smith B J, Walmsley I A, Silberhorn C 2011 Phys. Rev. A 83 031806

    [17]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M, Sasaki M 2013 Phys. Rev. A 87 063801

    [18]

    McMillan A R, Labonte L, Clark A S, Bell B, Alibart O, Martin A, Wadsworth W J, Tanzilli S, Rarity J G 2013 Sci. Rep. 3 2032

    [19]

    Li X, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [20]

    Takesue H, Inoue K 2004 Phys. Rev. A 70 031802

    [21]

    Takesue H, Inoue K 2005 Phys. Rev. A 72 041804

    [22]

    Wang S X, Kanter G S 2009 IEEE J. Selected Topics in Quantum Electronics 15 1733

    [23]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善 2008 物理学报 57 4933]

    [24]

    Silverstone J W, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan C M, Tanner M G, Hadfield R H, Zwiller V, Marshall G D, Rarity J G, O'Brien J L, Thompson M G 2014 Nat. Photon. 8 104

    [25]

    Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R 2015 Nat. Comunn. 6 8236

    [26]

    Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R 2016 Science 351 1176

    [27]

    Takesue H 2007 Appl. Phys. Lett. 90 204101

    [28]

    Li Y H, Zhou Z Y, Xu Z H, Xu L X, Shi B S, Guo G C 2016 Phys. Rev. A 94 043810

    [29]

    U'Ren A B, Silberhorn C, Banaszek K, Walmsley I A, Erdmann R, Grice W P, Raymer M G 2005 Laser Phys. 15 146

    [30]

    Grice W P, U'Ren A B, Walmsley I A 2001 Phys. Rev. A 64 063815

    [31]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [32]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659

  • [1]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photon. 9 641

    [4]

    Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C, Han Z F 2015 Phys. Rev. Lett. 115 160502

    [5]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879

    [6]

    Tan Y G, Liu Q 2016 Chin. Phys. Lett. 33 090303

    [7]

    Ma H X, Bao W S, Li H W, Chou C 2016 Chin. Phys. B 25 080309

    [8]

    Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502

    [9]

    Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C, Walmsley I A 2008 Phys. Rev. Lett. 100 133601

    [10]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011

    [11]

    Tanida M, Okamoto R, Takeuchi S 2012 Opt. Express 20 15275

    [12]

    Kim Y H, Grice W P 2005 Opt. Lett. 30 908

    [13]

    Wasilewski W, Wasylczyk P, Kolenderski P, Banaszek K, Radzewicz C 2006 Opt. Lett. 31 1130

    [14]

    Fulconis J, Alibart O, O'Brien J L, Wadsworth W J, Rarity J G 2007 Phys. Rev. Lett. 99 120501

    [15]

    Halder M, Fulconis J, Cemlyn B, Clark A, Xiong C, Wadsworth W J, Rarity J G 2009 Opt. Express 17 4670

    [16]

    Soller C, Cohen O, Smith B J, Walmsley I A, Silberhorn C 2011 Phys. Rev. A 83 031806

    [17]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M, Sasaki M 2013 Phys. Rev. A 87 063801

    [18]

    McMillan A R, Labonte L, Clark A S, Bell B, Alibart O, Martin A, Wadsworth W J, Tanzilli S, Rarity J G 2013 Sci. Rep. 3 2032

    [19]

    Li X, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [20]

    Takesue H, Inoue K 2004 Phys. Rev. A 70 031802

    [21]

    Takesue H, Inoue K 2005 Phys. Rev. A 72 041804

    [22]

    Wang S X, Kanter G S 2009 IEEE J. Selected Topics in Quantum Electronics 15 1733

    [23]

    Yang L, Li X Y, Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [杨磊, 李小英, 王宝善 2008 物理学报 57 4933]

    [24]

    Silverstone J W, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan C M, Tanner M G, Hadfield R H, Zwiller V, Marshall G D, Rarity J G, O'Brien J L, Thompson M G 2014 Nat. Photon. 8 104

    [25]

    Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R 2015 Nat. Comunn. 6 8236

    [26]

    Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R 2016 Science 351 1176

    [27]

    Takesue H 2007 Appl. Phys. Lett. 90 204101

    [28]

    Li Y H, Zhou Z Y, Xu Z H, Xu L X, Shi B S, Guo G C 2016 Phys. Rev. A 94 043810

    [29]

    U'Ren A B, Silberhorn C, Banaszek K, Walmsley I A, Erdmann R, Grice W P, Raymer M G 2005 Laser Phys. 15 146

    [30]

    Grice W P, U'Ren A B, Walmsley I A 2001 Phys. Rev. A 64 063815

    [31]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [32]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659

计量
  • 文章访问数:  4357
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-03-29
  • 刊出日期:  2017-06-05

两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉

    基金项目: 国家自然科学基金(批准号:11174271,61275115,61435011,61525504)和中央高校基本科研业务费专项资金(批准号:WK2030380009)资助的课题.

摘要: 独立光子源的干涉是实现复杂量子体系应用(比如多光子纠缠态产生和量子隐形传态等)的核心技术.利用100 GHz密集波分复用技术,实现了1.55 m全光纤多通道独立纠缠光子源的Hong-Ou-Mandel干涉,在不去除暗符合(随机符合计数)的情况下,可见度为53.2%8.4%,去除暗符合可见度可达到82.9%5.3%.给出了关于色散位移光纤中基于自发四波混频过程产生的单光子光谱纯度严格的理论描述,模拟了抽运脉冲宽度和滤波器带宽对单光子光谱纯度的影响,并给出了理论上的最佳条件(最佳的抽运脉冲宽度为8 ps,高斯滤波器带宽为40 GHz及以下).在测量Hong-Ou-Mandel干涉之前,先测量了液氮冷却状态下的色散位移光纤关联光子源的符合和随机符合比率,在抽运功率为23 W的情况下,最大比率可以达到131.Hong-Ou-Mandel干涉在高精度光学测量、测量装置无关的量子密钥分配等应用中扮演着极为重要的角色.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回