Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hong-Ou-Mandel interference of entangled photons generated under pump-tight-focusing condition

Tian Ying Cai Wu-Hao Yang Zi-Xiang Chen Feng Jin Rui-Bo Zhou Qiang

Citation:

Hong-Ou-Mandel interference of entangled photons generated under pump-tight-focusing condition

Tian Ying, Cai Wu-Hao, Yang Zi-Xiang, Chen Feng, Jin Rui-Bo, Zhou Qiang
PDF
HTML
Get Citation
  • Hong-Ou-Mandel (HOM) interference is a non-classical effect of photons and plays an important role in quantum optics. The β-barium borate (BBO) has a high nonlinear efficiency, and is commonly used to generate biphoton states, thereby exhibiting HOM interference. However, in previous experiments, researchers often used band-pass filters, so the resulting spectrum was directly determined by the band-pass filter. As a result, the original spectrum of the BBO crystal, especially the spectrum under tight focusing, was lack of systematic research. In this paper, the biphoton spectral distribution and HOM interference generated by the BBO crystal under the condition of tight focusing are systematically studied for the first time. Theoretical calculations show that using a lens with 50-mm focusing length, the spectral width of the down-converted photons is increased by 7.9 times that of the non-focused case; the width of the HOM interference fringe is reduced to 1/8, and the visibility of the interference fringe increases from 53.0% to 98.7%. We experimentally prepare the energy-time entanglement state by using type-II BBO crystal and perform HOM interference, thereby obtaining the interference visibility of $(86.6 \pm 1.0)$%. The increasing of the HOM visibility is due to the improvement of biphoton's spectral symmetry. In addition, the proposed technique by which different spectral distributions are obtained at different incident angles is expected to be applied to the preparation of high-dimensional qudits in the future.
      Corresponding author: Jin Rui-Bo, jrbqyj@foxmail.com ; Zhou Qiang, zhouqiang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074299, 91836102, 11704290) and the National Key R&D Program of China (Grant No. 2018YFA0307400)
    [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    张越, 候飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [3]

    孙涛, 汪垟, 李剑, 王琴 2019 光子学报 48 0427001Google Scholar

    Sun T, Wang Y, Li J, Wang Q 2019 Acta Photon. Sin. 48 0427001Google Scholar

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [5]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501Google Scholar

    [6]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [7]

    Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, You L, Wang Z, Song H, Guo G, Zhou Q 2021 NPJ Quantum Inf. 7 123Google Scholar

    [8]

    Fan Y R, Yuan C Z, Zhang R M, Shen S, Wu P, Wang H Q, Li H, Deng G W, Song H Z, You L X, Wang Z, Wang Y, Guo G C, Zhou Q 2021 Photonics Res. 9 1134Google Scholar

    [9]

    Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 eaap9416Google Scholar

    [10]

    Gerrits T, Marsili F, Verma V B, Shalm L K, Shaw M, Mirin R P, Nam S W 2015 Phys. Rev. A 91 013830Google Scholar

    [11]

    Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, Yamashita T, Miki S, Terai H, Shimizu R, Takeoka M, Sasaki M 2015 Opt. Express 23 28836Google Scholar

    [12]

    Jin R B, Shimizu R, Fujiwara M, Takeoka M, Wakabayashi R, Yamashita T, Miki S, Terai H, Gerrits T, Sasaki M 2016 Quantum Sci. Technol. 1 015004Google Scholar

    [13]

    Jachura M, Chrapkiewicz R 2015 Opt. Lett. 40 1540Google Scholar

    [14]

    Kobayashi T, Ikuta R, Yasui S, Miki S, Yamashita T, Terai H, Yamamoto T, Koashi M, Imoto N 2016 Nat. Photonics 10 441Google Scholar

    [15]

    Ono T, Okamoto R, Takeuchi S 2013 Nat. Commun. 4 2426Google Scholar

    [16]

    陈创天, 吴柏昌, 江爱栋, 尤桂铭 1984 中国科学 B 14 598

    Chen C T, Wu B C, Jiang A D, You G M 1984 Sci. Sin. B 14 598

    [17]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337Google Scholar

    [18]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 6 0

    [19]

    Niu X L, Huang Y F, Xiang G Y, Guo G C, Ou Z Y 2008 Opt. Lett. 33 968Google Scholar

    [20]

    Takeuchi S 2001 Opt. Lett. 26 843Google Scholar

    [21]

    Xu X Y, Wang Q Q, Pan W W, Sun K, Xu J S, Chen G, Tang J S, Gong M, Han Y J, Li C F, Guo G C 2018 Phys. Rev. Lett. 120 260501Google Scholar

    [22]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [23]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photonics 6 225Google Scholar

    [24]

    Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C 2011 Nat. Commun. 2 546Google Scholar

    [25]

    Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 250505Google Scholar

    [26]

    Li Z, Cheng C, Romero C, Lu Q, de Aldana J R V, Chen F 2017 Opt. Mater. 73 45Google Scholar

    [27]

    Jia Y, de Aldana J R V, Romero C, Ren Y, Lu Q, Chen F 2012 Appl. Phys. Express 5 072701Google Scholar

    [28]

    Molina-Terriza G, Minardi S, Deyanova Y, Osorio C I, Hendrych M, Torres J P 2005 Phys. Rev. A 72 065802Google Scholar

    [29]

    Torres J P, Molina-Terriza G, Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 235Google Scholar

    [30]

    Bennink R S, Liu Y, Earl D D, Grice W P 2006 Phys. Rev. A 74 023802Google Scholar

    [31]

    Osorio C I, Valencia A, Torres J P 2008 New J. Phys. 10 113012Google Scholar

    [32]

    Brambilla E, Caspani L, Lugiato L A, Gatti A 2010 Phys. Rev. A 82 013835Google Scholar

    [33]

    Kolenderski P, Wasilewski W, Banaszek K 2009 Phys. Rev. A 80 013811Google Scholar

    [34]

    Bennink R S 2010 Phys. Rev. A 81 053805Google Scholar

    [35]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [36]

    Raymer M G, Noh J, Banaszek K, Walmsley I A 2005 Phys. Rev. A 72 023825Google Scholar

    [37]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [38]

    Jin R B, Shimizu R 2018 Optica 5 93Google Scholar

    [39]

    Cai N, Cai W H, Wang S, Li F, Shimizu R, Jin R B 2022 J. Opt. Soc. Am. B 39 77Google Scholar

    [40]

    Smith A "SNLO" http://www.as-photonics.com/snlo[2021-11-22]

    [41]

    Jin R B, Cai W H, Ding c, Mei F, Deng G W, Shimizu R, Zhou Q 2020 Quan. Eng. 2 e38

  • 图 1  (a) 泵浦光强聚焦于BBO晶体的示意图; (b)—(d) 入射角分别为42.29°, 41.79°和41.29°时的方案图和联合频谱强度图; (e) 计算泵浦光斑上任意一点p的入射角的立体模型; (f)—(h) 透镜焦距分别为50, 100和200 mm时泵浦光斑的入射角分布

    Figure 1.  (a) Schematic diagram of the BBO crystal under the tight focusing; (b)–(d) setups and JSIs with the incident angles of 42.29°, 41.79°, and 41.29°, respectively; (e) three dimensional (3D) model for calculating the incident angle of an arbitrary point p on the pump; (f)–(h) distribution of the incident angle using lenses with the focal lengths of 50, 100, and 200 mm, respectively.

    图 2  不同聚焦条件下的JSI分布和边缘投影分布 (a) 无透镜(焦距为$ \infty $); (b)—(d) 透镜焦距分别为200, 50和100 mm; (e) 透镜焦距为100 mm加上带宽为12.1 nm的BPF; (f) BPF的透过率测试图, 图中Δ为半波全宽

    Figure 2.  Joint spectral intensities and marginal projection under different focusing conditions: (a) No lens; (b)–(d) using lenes with focal lengths of 200, 50, and 100 mm, respectively; (e) focal length of the lens is 100 mm and the BPF with a bandwidth of 12.1 nm; (f) transmittance of the BPF, Δ is FWHM.

    图 3  不同焦距透镜聚焦条件下的HOM干涉模拟图 (a) 无透镜聚焦; (b)—(d) 透镜焦距分别为200, 100和50 mm; (e) 透镜焦距为100 mm加上带宽为12 nm的BPF, 图中V为干涉可见度, FWHM为干涉条纹的宽度

    Figure 3.  Simulated HOM interference under different focusing conditions: (a) Using no lens; (b)–(d) using lenes with a focal length of 200, 100, and 50 mm respectively; (e) focal length of the lens is 100 mm and a BPF with a bandwidth of 12 nm. In the figure, V is the visibility of interference, and FWHM is the width of the interference fringe.

    图 4  HOM干涉实验装置图

    Figure 4.  Experimental setup of HOM interference.

    图 5  (a) 信号光与闲频光的光谱图, 红色为信号光(通道1), 蓝色为闲频光(通道2); (b) 粗略扫描得到的HOM干涉图样; (c) 精细扫描得到的HOM干涉图样

    Figure 5.  (a) Spectrogram of the signal and the idler, red is the signal (Channel 1), blue is the idler (Channel 2); (b) HOM interference pattern obtained from rough scanning; (c) HOM interference pattern obtained from precise scanning.

    图 6  (a) 透镜焦距f与双光子光谱宽度(Δ为半波全宽)之间的关系图; (b) 透镜焦距f与HOM干涉可见度之间的关系图

    Figure 6.  (a) Diagram of the relationship between the lens focal length f and the biphoton spectral width (Δ, the FWHM); (b) diagram of the relationship between lens focal length f and HOM interference visibility.

    表 1  不同入射角对应的信号光与闲频光的波长

    Table 1.  Wavelengths of the signal and idler under different incident angles

    θ/(°) $\Delta \theta$/(°) ${\lambda _{{{\rm{s}}_0}}}$/nm ${\lambda _{{{\rm{i}}_0}}}$/nm
    40.79 –1.0 777.834 844.941
    41.29 –0.5 793.565 827.130
    41.79 0 809.897 810.103
    42.29 0.5 826.854 793.819
    42.79 1.0 844.459 778.243
    DownLoad: CSV
  • [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    张越, 候飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [3]

    孙涛, 汪垟, 李剑, 王琴 2019 光子学报 48 0427001Google Scholar

    Sun T, Wang Y, Li J, Wang Q 2019 Acta Photon. Sin. 48 0427001Google Scholar

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [5]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501Google Scholar

    [6]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [7]

    Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, You L, Wang Z, Song H, Guo G, Zhou Q 2021 NPJ Quantum Inf. 7 123Google Scholar

    [8]

    Fan Y R, Yuan C Z, Zhang R M, Shen S, Wu P, Wang H Q, Li H, Deng G W, Song H Z, You L X, Wang Z, Wang Y, Guo G C, Zhou Q 2021 Photonics Res. 9 1134Google Scholar

    [9]

    Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 eaap9416Google Scholar

    [10]

    Gerrits T, Marsili F, Verma V B, Shalm L K, Shaw M, Mirin R P, Nam S W 2015 Phys. Rev. A 91 013830Google Scholar

    [11]

    Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, Yamashita T, Miki S, Terai H, Shimizu R, Takeoka M, Sasaki M 2015 Opt. Express 23 28836Google Scholar

    [12]

    Jin R B, Shimizu R, Fujiwara M, Takeoka M, Wakabayashi R, Yamashita T, Miki S, Terai H, Gerrits T, Sasaki M 2016 Quantum Sci. Technol. 1 015004Google Scholar

    [13]

    Jachura M, Chrapkiewicz R 2015 Opt. Lett. 40 1540Google Scholar

    [14]

    Kobayashi T, Ikuta R, Yasui S, Miki S, Yamashita T, Terai H, Yamamoto T, Koashi M, Imoto N 2016 Nat. Photonics 10 441Google Scholar

    [15]

    Ono T, Okamoto R, Takeuchi S 2013 Nat. Commun. 4 2426Google Scholar

    [16]

    陈创天, 吴柏昌, 江爱栋, 尤桂铭 1984 中国科学 B 14 598

    Chen C T, Wu B C, Jiang A D, You G M 1984 Sci. Sin. B 14 598

    [17]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337Google Scholar

    [18]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 6 0

    [19]

    Niu X L, Huang Y F, Xiang G Y, Guo G C, Ou Z Y 2008 Opt. Lett. 33 968Google Scholar

    [20]

    Takeuchi S 2001 Opt. Lett. 26 843Google Scholar

    [21]

    Xu X Y, Wang Q Q, Pan W W, Sun K, Xu J S, Chen G, Tang J S, Gong M, Han Y J, Li C F, Guo G C 2018 Phys. Rev. Lett. 120 260501Google Scholar

    [22]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [23]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photonics 6 225Google Scholar

    [24]

    Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C 2011 Nat. Commun. 2 546Google Scholar

    [25]

    Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 250505Google Scholar

    [26]

    Li Z, Cheng C, Romero C, Lu Q, de Aldana J R V, Chen F 2017 Opt. Mater. 73 45Google Scholar

    [27]

    Jia Y, de Aldana J R V, Romero C, Ren Y, Lu Q, Chen F 2012 Appl. Phys. Express 5 072701Google Scholar

    [28]

    Molina-Terriza G, Minardi S, Deyanova Y, Osorio C I, Hendrych M, Torres J P 2005 Phys. Rev. A 72 065802Google Scholar

    [29]

    Torres J P, Molina-Terriza G, Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 235Google Scholar

    [30]

    Bennink R S, Liu Y, Earl D D, Grice W P 2006 Phys. Rev. A 74 023802Google Scholar

    [31]

    Osorio C I, Valencia A, Torres J P 2008 New J. Phys. 10 113012Google Scholar

    [32]

    Brambilla E, Caspani L, Lugiato L A, Gatti A 2010 Phys. Rev. A 82 013835Google Scholar

    [33]

    Kolenderski P, Wasilewski W, Banaszek K 2009 Phys. Rev. A 80 013811Google Scholar

    [34]

    Bennink R S 2010 Phys. Rev. A 81 053805Google Scholar

    [35]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [36]

    Raymer M G, Noh J, Banaszek K, Walmsley I A 2005 Phys. Rev. A 72 023825Google Scholar

    [37]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [38]

    Jin R B, Shimizu R 2018 Optica 5 93Google Scholar

    [39]

    Cai N, Cai W H, Wang S, Li F, Shimizu R, Jin R B 2022 J. Opt. Soc. Am. B 39 77Google Scholar

    [40]

    Smith A "SNLO" http://www.as-photonics.com/snlo[2021-11-22]

    [41]

    Jin R B, Cai W H, Ding c, Mei F, Deng G W, Shimizu R, Zhou Q 2020 Quan. Eng. 2 e38

  • [1] Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng. Optical and hyperfine spectroscopic investigations on europium ions doped in yttrium orthosilicate waveguides fabricated by focused ion beam milling. Acta Physica Sinica, 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [2] Luo Yi-Zhen, Ma Luo-Jia, Sun Ming-Shuo, Wu Si-Rui, Qiu Li-Hua, Wang He, Wang Qin. Source monitoring quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, 2024, 73(24): 240302. doi: 10.7498/aps.73.20241269
    [3] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [4] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [5] Zhai Yi-Wei, Li Wang. SSA-BP network model based Hong-Ou-Mandel interference delay measurement and its application in quantum gyroscope. Acta Physica Sinica, 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [6] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [7] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [8] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [9] Li Yin-Hai, Xu Zhao-Huai, Wang Shuang, Xu Li-Xin, Zhou Zhi-Yuan, Shi Bao-Sen. Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources. Acta Physica Sinica, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [10] Chen Guo-Zhu, Shen Yong, Liu Qu, Zou Hong-Xin. Generation of 266 nm continuous-wave with elliptical Gaussian beams. Acta Physica Sinica, 2014, 63(5): 054204. doi: 10.7498/aps.63.054204
    [11] Li Zhuo, Xing Li-Juan. Error bases, group algebra and quantum codes. Acta Physica Sinica, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [12] Xing Li-Juan, Li Zhuo, Zhang Wu-Jun. Strengthened quantum Hamming bound. Acta Physica Sinica, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [13] Wang Yun-Jiang, Bai Bao-Ming, Wang Xin-Mei. Feedback iterative decoding of sparse quantum codes. Acta Physica Sinica, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [14] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [15] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [16] Xing Li-Juan, Li Zhuo, Bai Bao-Ming, Wang Xin-Mei. Encoding and decoding of quantum convolutional codes. Acta Physica Sinica, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [17] Li Zhuo, Xing Li-Juan. Quantum Generalized Reed-Solomon codes. Acta Physica Sinica, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [18] Li Zhuo, Xing Li-Juan. A family of asymptotically good quantum codes based on code concatenation. Acta Physica Sinica, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [19] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [20] Zhang Quan, Tang Chao-Jing, Gao Feng. . Acta Physica Sinica, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
Metrics
  • Abstract views:  7362
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2021
  • Accepted Date:  08 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 March 2022

/

返回文章
返回