Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical and Hyperfine Spectroscopic Investigations on Europium Ions Doped in Yttrium Orthosilicate Waveguides Fabricated by Focused Ion Beam Milling

Xiao Yi-Xin Zhu Tian-Xiang Liang Peng-Jun Wang Yi-Yang Zhou Zong-Quan Li Chuan-Feng

Citation:

Optical and Hyperfine Spectroscopic Investigations on Europium Ions Doped in Yttrium Orthosilicate Waveguides Fabricated by Focused Ion Beam Milling

Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng
PDF
Get Citation
  • Quantum memory is a crucial element in large-scale quantum networks. Integrated quantum memories based on micro-/-nano structures, such as waveguides, could significantly enhance the scalability and reduce the consumption of optical and electrical power. 151Eu3+:Y2SiO5 stands out as an exceptional candidate material for quantum memory, because it possesses a spin coherence lifetime of 6 hours and an optical storage lifetime of 1 hour. Here we employ focused ion beam technology to fabricate a triangular nanobeam on the surface of a Y2SiO5 crystal. The width and length of the nanobeam are 2 μm and 20 μm, respectively. The optical lifetime and inhomogeneous broadening of 151Eu3+ in the triangular nanobeam are measured by fluorescence spectroscopy. The optical lifetime is 1.9 ±0.1 ms and the optical inhomogeneous broadening is 1.58 ±0.05 GHz at a doping level of 0.07% for 151Eu3+. The hyperfine transition spectra are measured using optically detected magnetic resonance and a spin inhomogeneous broadening of 19 ±3 kHz is obtained. Furthermore, we analyze the coherence property of optical and hyperfine transitions separately via transient spectral hole burning and spin echo measurement. We obtain a optical homogeneous linewidth down to 22 ±3 kHz which is still limited by the instantaneous spectral diffusion and a spin coherence lifetime of 5.1 ±0.6 ms at the geomagnetic field. The results demonstrate that 151Eu3+ embedded within the 2 μm triangular nanobeam essentially retain the same optical and hyperfine transition properties as those observed in bulk crystals. Consequently, this research establishes a foundation for integrated quantum memories based on 151Eu3+ ensembles and the detection of the single 151Eu3+ ion based on the focused ion beam technique.
  • [1]

    Lukin M D 2003 Rev. Mod. Phys. 75 457

    [2]

    Zhou Z, Liu C, Li C, Guo G, Oblak D, Lei M, Faraon A, Mazzera M, De Riedmatten H 2023 Laser & Photonics Reviews 17 2300257

    [3]

    Lei Y, Kimiaee Asadi F, Zhong T, Kuzmich A, Simon C, Hosseini M 2023 Optica 10 1511

    [4]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [5]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [6]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [7]

    Kimble H J 2008 Nature 453 1023

    [8]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nature Photonics 3 706

    [9]

    Hong C K, Mandel L 1986 Phys. Rev. Lett. 56 58

    [10]

    Nunn J, Reim K, Lee K C, Lorenz V O, Sussman B J, Walmsley I A, Jaksch D 2008 Phys. Rev. Lett. 101 260502

    [11]

    Davidson O, Yogev O, Poem E, Firstenberg O 2023 Phys. Rev. Lett. 131 033601

    [12]

    Imamoḡlu A 2002 Phys. Rev. Lett. 89 163602

    [13]

    Clausen C, Sangouard N, Drewsen M 2013 New Journal of Physics 15 025021

    [14]

    Liu X, Hu X M, Zhu T X, Zhang C, Xiao Y X, Miao J L, Ou Z W, Liu B H, Zhou Z Q, Li C F, Guo G C 2023. ArXiv: 2307.15634 [quant-ph]

    [15]

    Thiel C, Böttger T, Cone R 2011 Journal of Luminescence 131 353

    [16]

    De Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773

    [17]

    Longdell J J, Alexander A L, Sellars M J 2006 Phys. Rev. B 74 195101

    [18]

    Fraval E, Sellars M J, Longdell J J 2004 Phys. Rev. Lett. 92 077601

    [19]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177

    [20]

    Rančić M, Hedges M P, Ahlefeldt R L, Sellars M J 2018 Nature Physics 14 50

    [21]

    Ortu A, Holzäpfel A, Etesse J, Afzelius M 2022 npj Quantum Information 8 29

    [22]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nature Communications 12 2381

    [23]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512

    [24]

    Usmani I, Afzelius M, De Riedmatten H, Gisin N 2010 Nature Communications 1 12

    [25]

    Businger M, Nicolas L, Mejia T S, Ferrier A, Goldner P, Afzelius M 2022 Nature Communications 13 6438

    [26]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nature Communications 9 3407

    [27]

    Seri A, Lago-Rivera D, Lenhard A, Corrielli G, Osellame R, Mazzera M, de Riedmatten H 2019 Phys. Rev. Lett. 123 080502

    [28]

    Chen F, De Aldana J R V 2014 Laser & Photonics Reviews 8 251

    [29]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504

    [30]

    Zhu T X, Liu C, Zheng L, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Appl. 14 054071

    [31]

    Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Ye Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 128 180501

    [32]

    Liu D C, Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 129 210501

    [33]

    Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nature Communications 6 8206

    [34]

    Miyazono E, Zhong T, Craiciu I, Kindem J M, Faraon A 2016 Applied Physics Letters 108 011111

    [35]

    Zhong T, Rochman J, Kindem J M, Miyazono E, Faraon A 2016 Optics Express 24 536

    [36]

    Kindem J M, Ruskuc A, Bartholomew J G, Rochman J, Huan Y Q, Faraon A 2020 Nature 580 201

    [37]

    Dibos A M, Raha M, Phenicie C M, Thompson J D 2018 Phys. Rev. Lett. 120 243601

    [38]

    Weiss L, Gritsch A, Merkel B, Reiserer A 2021 Optica 8 40

    [39]

    Zhu T X, Su M X, Liu C, Liu Y P, Wang C F, Liu P X, Han Y J, Zhou Z Q, Li C F, Guo G C 2024 National Science Review nwae161

    [40]

    Bayn I, Meyler B, Salzman J, Kalish R 2011 New Journal of Physics 13 025018

    [41]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2018 Phys. Rev. Lett. 121 183603

    [42]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392

    [43]

    Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong T, Sinclair N, Faraon A 2019 Phys. Rev. Appl. 12 024062

    [44]

    Liang P J, Zhu T X, Xiao Y X, Wang Y Y, Han Y J, Zhou Z Q, Li C F 2024 Acta Physica Sinica 73 100301

    [45]

    Könz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L, Macfarlane R M 2003 Phys. Rev. B 68 085109

    [46]

    Stoneham A M 1969 Rev. Mod. Phys. 41 82

    [47]

    Lafitte-Houssat E, Ferrier A, Welinski S, Morvan L, Afzelius M, Berger P, Goldner P 2022 Optical Materials: X 14 100153

    [48]

    Louchet-Chauvet A, Ahlefeldt R, Chanelière T 2019 Review of Scientific Instruments 90 034901

    [49]

    Gritsch A, Weiss L, Früh J, Rinner S, Reiserer A 2022 Phys. Rev. X 12 041009

    [50]

    Bartholomew J G, de Oliveira Lima K, Ferrier A, Goldner P 2017 Nano Letters 17 778

    [51]

    Szabo A 1975 Phys. Rev. B 11 4512

    [52]

    Völker S 1989 Annual Review of Physical Chemistry 40 499

    [53]

    Reiserer A 2022 Rev. Mod. Phys. 94 041003

    [54]

    Meiboom S, Gill D 1958 Review of Scientific Instruments 29 688

    [55]

    Arcangeli A, Lovrić M, Tumino B, Ferrier A, Goldner P 2014 Phys. Rev. B 89 184305

    [56]

    Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403

    [57]

    Ma Y Z, Lv Y C, Yang T S, Ma Y, Zhou Z Q, Li C F, Guo G C 2023 Phys. Rev. B 107 014310

    [58]

    Alexander A L, Longdell J J, Sellars M J 2007 Journal of the Optical Society of America B 24 2479

    [59]

    Hahn E L 1950 Phys. Rev. 80 580

  • [1] Liang Peng-Jun, Zhu Tian-Xiang, Xiao Yi-Xin, Wang Yi-Yang, Han Yong-Jian, Zhou Zong-Quan, Li Chuan-Feng. Concentration-dependent optical and spin inhomogeneous linewidth of europium-doped yttrium orthosilicate crystals. Acta Physica Sinica, doi: 10.7498/aps.73.20240116
    [2] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.72.20231203
    [3] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, doi: 10.7498/aps.72.20222166
    [4] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, doi: 10.7498/aps.71.20212245
    [5] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, doi: 10.7498/aps.71.20220083
    [6] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20211803
    [7] Li Zong-Feng, Liu Duan-Cheng, Zhou Zong-Quan, Li Chuan-Feng. Atomic frequency comb optical memory in EuCl3·6H2O crystal. Acta Physica Sinica, doi: 10.7498/aps.70.20210648
    [8] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20182207
    [9] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, doi: 10.7498/aps.68.20181729
    [10] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, doi: 10.7498/aps.68.20182215
    [11] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20190039
    [12] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, doi: 10.7498/aps.66.144202
    [13] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, doi: 10.7498/aps.66.074201
    [14] Sun Ying, Zhao Shang-Hong, Dong Chen. Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica, doi: 10.7498/aps.64.140304
    [15] Xing Li-Juan, Li Zhuo, Zhang Wu-Jun. Strengthened quantum Hamming bound. Acta Physica Sinica, doi: 10.7498/aps.60.050304
    [16] Liu Chun-Xu, Zhang Ji-Sen, Liu Jun-Ye, Jin Guang. The quantum coherent left handness of Λ-type four level system in Er3+:YAlO3 crystal. Acta Physica Sinica, doi: 10.7498/aps.58.5778
    [17] Li Zhuo, Xing Li-Juan. Quantum Generalized Reed-Solomon codes. Acta Physica Sinica, doi: 10.7498/aps.57.28
    [18] Xu Xing-Sheng, Xiong Zhi-Gang, Jin Ai-Zi, Chen Hong-Da, Zhang Dao-Zhong. Fabrication of photonic crystal on semiconductor materials by using focued ion-beam. Acta Physica Sinica, doi: 10.7498/aps.56.916
    [19] Xu Xing-Sheng, Xiong Zhi-Gang, Sun Zeng-Hui, Du Wei, Lu Lin, Chen Hong-Da, Jin Ai-Zi, Zhang Dao-Zhong. Optical properties of semiconductor quantum-well material using photonic crystal fabricated by micro-fabrication machine. Acta Physica Sinica, doi: 10.7498/aps.55.1248
    [20] Zhang Quan, Tang Chao-Jing, Gao Feng. . Acta Physica Sinica, doi: 10.7498/aps.51.15
Metrics
  • Abstract views:  101
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  10 October 2024

/

返回文章
返回