-
The uncertainty principle limits the ability for observer to precisely measure two incompatible observables, and plays a crucial role in quantum precision measurement in the quantum information science. When quantum systems interact with their surroundings, they inevitably result in decoherence, which increases the uncertainty of the system. In the process of quantum information processing, the effective regulation of uncertainty becomes a key problem that needs to be solved. In this work, we investigate the quantum-memory-assisted entropic uncertainty relation of a two-qubit system under correlated channels with dephasing colored noise. We demonstrate that it is possible to control the entropic uncertainty, U, and its lower bound, Ub, by combining correlations between successive uses of channels and the non-Markovianity of the dynamical evolution. Firstly, the evolutionary characteristics of the trace distance are employed to distinguish between Markovianity and non-Markovianity of the channel. Subsequently, the system is selected to be either a maximally entangled state or separated state initially. By adjusting the strength η of the correlations, we find that with the increase of η, the entropic uncertainty and its lower bound decrease. Especially, if the channel is fully correlated (η = 1), the entropic uncertainty and its lower bound remain constant under the channel, indicating that decoherence is completely suppressed. A comparison of Markovian channel with non-Markovian channel reveals that the entropic uncertainty and its lower bound exhibit oscillatory behaviour under non-Markovian channels. The combination of correlations and non-Markovianity of the channel demonstrates that the entropic uncertainty and its lower bound can be reduced under fully correlated channels where the non-Markovianity has no effect. This is because fully correlated channels suppress decoherence to a greatest extent. Under partially correlated channels, the combination of correlations and non-Markovianity can more effectively reduce the entropic uncertainty and its lower bound. Under such channels, correlations of the channel reduce the entropic uncertainty and its lower bound during the whole evolution, while the non-Markovianity contributes to their oscillations and reduce them in some specific time. Furthermore, the results show that the entropic uncertainty and its lower bound reach steady values that depend only on the strength of the correlations after long-time evolution. In other words, the stronger the correlations, the lower the entropy uncertainty and its lower bound of steady states will be. Finally, we analyse the physical nature of the decrease of the entropic uncertainty and its lower bound, and it is found that the decrease of the entropic uncertainty and its lower bound originate from the increase of the quantum correlations in the system.
-
Keywords:
- uncertainty relation /
- correlated channel /
- non-Markovianity /
- quantum correlation
[1] Heisenberg W 1927 Z. Phys. 43 172Google Scholar
[2] Robertson H P 1929 Phys. Rev. 34 163Google Scholar
[3] Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar
[4] Kraus K 1987 Phys. Rev. D 35 3070Google Scholar
[5] Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 60 1103Google Scholar
[6] Berta M, Christandl M, Colbeck R, Renes J M, Renner R 2010 Nat. Phys. 6 659Google Scholar
[7] Prevedel R, Hamel D R, Colbeck R, Fisher K, Resch K J 2011 Nat. Phys. 7 757Google Scholar
[8] Li C F, Xu J S, Xu X Y, Li K, Guo G C 2011 Nat. Phys. 7 752Google Scholar
[9] Shi J, Ding Z, Wu T, He J, Yu L, Sun W, Wang D, Ye L 2017 Laser Phys. Lett. 14 125208Google Scholar
[10] Hall M J W, Cerf N J 2012 New J. Phys. 14 033040Google Scholar
[11] Ekert A K 1991 Phys. Rev. Lett 67 661Google Scholar
[12] Renes J M, Boileau J C 2009 Phys. Rev. Lett 103 020402Google Scholar
[13] Haseli S, Dolatkhah H, Rangani Jahromi H, Salimi S, Khorashad A S 2020 Opt. Commun. 461 125287Google Scholar
[14] Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634Google Scholar
[15] Ng N H Y, Berta M, Wehner S 2012 Phys. Rev. A 86 042315Google Scholar
[16] Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar
[17] Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802Google Scholar
[18] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205Google Scholar
[19] Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar
[20] Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 72Google Scholar
[21] Wang T Y, Wang D 2024 Phys. Lett. B 855 138876Google Scholar
[22] Wang T Y, Wang D 2024 Phys. Lett. A 499 129364Google Scholar
[23] Wu L, Ye L, Wang D 2022 Phys. Rev. A 106 062219Google Scholar
[24] Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar
[25] Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar
[26] Bouafia Z, Oumennana M, Mansour M, Ouchni F 2024 Appl. Phys. B 130 94Google Scholar
[27] Abdel-Wahab N H, Ibrahim T A S, Amin M E, Salah A 2024 Eur. Phys. J. D 78 28Google Scholar
[28] Macchiavello C, Palma G M 2002 Phys. Rev. A 65 050301Google Scholar
[29] D’Arrigo A, Benenti G, Falci G 2007 New. J. Phys. 9 310Google Scholar
[30] D’Arrigo A, Benenti G, Falci G 2013 Phys. Rev. A 88 042337Google Scholar
[31] Sk R, Panigrehi P K 2024 Phys. Rev. A 109 032425Google Scholar
[32] Guo Y N, Fang M F, Wang G Y, Zeng K 2016 Quantum Inf. Process. 15 5129Google Scholar
[33] Peng Z Y, Wu F L, Li J, Xue H N, Liu S Y, Wang Z Y 2023 Phys. Rev. A 107 022405Google Scholar
[34] Yu M, Guo Y N 2024 Int. J. Theor. Phys. 63 156Google Scholar
[35] Xie Y X, Qin Z Y 2020 Quantum Inf. Process. 19 375Google Scholar
[36] 董曜, 纪爱玲, 张国锋 2022 物理学报 71 070303Google Scholar
Dong Y, Ji A L, Zhang G F 2022 Acta Phys. Sin. 71 070303Google Scholar
[37] Zhang D H, Wu F L, Peng Z Y, Wang L, Liu S Y 2023 Quantum Inf. Process. 22 120Google Scholar
[38] Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar
[39] Haseli S, Hadipour M 2022 Int. J. Theor. Phys. 61 117Google Scholar
[40] Awasthi N, Joshi D K, Sachdev S 2022 Int. J. Theor. Phys. 61 123Google Scholar
[41] Hou L, Zhang Y , Zhu Y 2023 Int. J. Theor. Phys. 62 221Google Scholar
[42] Lindblad G 1976 Comm. Math. Phys. 48 119Google Scholar
[43] Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402Google Scholar
[44] Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar
[45] Hwang B, Goan H S 2012 Phys. Rev. A 85 032321Google Scholar
[46] Banu H, Rao K R 2024 Eur. Phys. J. Plus 139 436Google Scholar
[47] Addis C, Karpat G, Macchiavello C, Maniscalco 2016 Phys. Rev. A 94 032121Google Scholar
[48] Awasthi N, Haseli S, Johri U C, Salimi S, Dolatkhah H 2020 Quantum Inf. Process. 19 10Google Scholar
[49] Wang G Y, Guo Y N, Zeng K 2019 J. Mod. Opt. 66 367Google Scholar
[50] 李丽娟, 明飞, 宋学科, 叶柳, 王栋 2022 物理学报 71 070302Google Scholar
Li L J, Ming F, Song X K, Ye L, Wang D 2022 Acta Phys. Sin. 71 070302Google Scholar
[51] Hajihoseinlou H, Ahansaz B 2024 Laser Phys. 34 075202Google Scholar
[52] Daffer S, Wodkiewicz K, Cresser J D, McIver J K 2004 Phys. Rev. A 70 010304(RGoogle Scholar
[53] Cai X 2020 Sci. Rep. 10 88Google Scholar
[54] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401Google Scholar
[55] Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar
[56] Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J Dong, Ye L, Kais S 2017 Sci. Rep. 7 1066Google Scholar
[57] Xu Z Y, Yang W L, Feng M 2012 Phys. Rev. A 86 012113Google Scholar
[58] Hu M L, Zhou W 2019 Laser Phys. Lett. 16 045201Google Scholar
[59] Hu M L, Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322Google Scholar
[60] Hu M L, Zhang Y H, Fan H 2021 Chin. Phys. B 30 030308Google Scholar
[61] Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar
[62] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar
[63] Mazzola L, Piilo J, Maniscalco S 2011 Int. J. Quantum Inf. 09 981Google Scholar
[64] Pati A K, Wilde M M, Devi A R U, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105Google Scholar
[65] Hu M L, Fan H 2013 Phys. Rev. A 88 014105Google Scholar
[66] Hu M L, Fan H 2013 Phys. Rev. A 87 022314Google Scholar
-
图 6 初态为可分离态时量子关联$ Q({\boldsymbol{\rho}}_{AB}) $随时间的演化(a)通道参数$ \nu= 0.1 $, 呈现马尔科夫性; (b)通道参数$ \nu=10 $, 呈现非马尔科夫性
Figure 6. Evolution of quantum correlations $ Q({\boldsymbol{\rho}}_{AB}) $ of the system which is initially in a separated state: (a) The channel is Markovian, where $ \nu=0.1 $; (b) the channel is non-Markovian, where $ \nu=10 $.
-
[1] Heisenberg W 1927 Z. Phys. 43 172Google Scholar
[2] Robertson H P 1929 Phys. Rev. 34 163Google Scholar
[3] Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar
[4] Kraus K 1987 Phys. Rev. D 35 3070Google Scholar
[5] Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 60 1103Google Scholar
[6] Berta M, Christandl M, Colbeck R, Renes J M, Renner R 2010 Nat. Phys. 6 659Google Scholar
[7] Prevedel R, Hamel D R, Colbeck R, Fisher K, Resch K J 2011 Nat. Phys. 7 757Google Scholar
[8] Li C F, Xu J S, Xu X Y, Li K, Guo G C 2011 Nat. Phys. 7 752Google Scholar
[9] Shi J, Ding Z, Wu T, He J, Yu L, Sun W, Wang D, Ye L 2017 Laser Phys. Lett. 14 125208Google Scholar
[10] Hall M J W, Cerf N J 2012 New J. Phys. 14 033040Google Scholar
[11] Ekert A K 1991 Phys. Rev. Lett 67 661Google Scholar
[12] Renes J M, Boileau J C 2009 Phys. Rev. Lett 103 020402Google Scholar
[13] Haseli S, Dolatkhah H, Rangani Jahromi H, Salimi S, Khorashad A S 2020 Opt. Commun. 461 125287Google Scholar
[14] Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634Google Scholar
[15] Ng N H Y, Berta M, Wehner S 2012 Phys. Rev. A 86 042315Google Scholar
[16] Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar
[17] Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802Google Scholar
[18] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205Google Scholar
[19] Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar
[20] Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 72Google Scholar
[21] Wang T Y, Wang D 2024 Phys. Lett. B 855 138876Google Scholar
[22] Wang T Y, Wang D 2024 Phys. Lett. A 499 129364Google Scholar
[23] Wu L, Ye L, Wang D 2022 Phys. Rev. A 106 062219Google Scholar
[24] Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar
[25] Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar
[26] Bouafia Z, Oumennana M, Mansour M, Ouchni F 2024 Appl. Phys. B 130 94Google Scholar
[27] Abdel-Wahab N H, Ibrahim T A S, Amin M E, Salah A 2024 Eur. Phys. J. D 78 28Google Scholar
[28] Macchiavello C, Palma G M 2002 Phys. Rev. A 65 050301Google Scholar
[29] D’Arrigo A, Benenti G, Falci G 2007 New. J. Phys. 9 310Google Scholar
[30] D’Arrigo A, Benenti G, Falci G 2013 Phys. Rev. A 88 042337Google Scholar
[31] Sk R, Panigrehi P K 2024 Phys. Rev. A 109 032425Google Scholar
[32] Guo Y N, Fang M F, Wang G Y, Zeng K 2016 Quantum Inf. Process. 15 5129Google Scholar
[33] Peng Z Y, Wu F L, Li J, Xue H N, Liu S Y, Wang Z Y 2023 Phys. Rev. A 107 022405Google Scholar
[34] Yu M, Guo Y N 2024 Int. J. Theor. Phys. 63 156Google Scholar
[35] Xie Y X, Qin Z Y 2020 Quantum Inf. Process. 19 375Google Scholar
[36] 董曜, 纪爱玲, 张国锋 2022 物理学报 71 070303Google Scholar
Dong Y, Ji A L, Zhang G F 2022 Acta Phys. Sin. 71 070303Google Scholar
[37] Zhang D H, Wu F L, Peng Z Y, Wang L, Liu S Y 2023 Quantum Inf. Process. 22 120Google Scholar
[38] Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar
[39] Haseli S, Hadipour M 2022 Int. J. Theor. Phys. 61 117Google Scholar
[40] Awasthi N, Joshi D K, Sachdev S 2022 Int. J. Theor. Phys. 61 123Google Scholar
[41] Hou L, Zhang Y , Zhu Y 2023 Int. J. Theor. Phys. 62 221Google Scholar
[42] Lindblad G 1976 Comm. Math. Phys. 48 119Google Scholar
[43] Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402Google Scholar
[44] Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar
[45] Hwang B, Goan H S 2012 Phys. Rev. A 85 032321Google Scholar
[46] Banu H, Rao K R 2024 Eur. Phys. J. Plus 139 436Google Scholar
[47] Addis C, Karpat G, Macchiavello C, Maniscalco 2016 Phys. Rev. A 94 032121Google Scholar
[48] Awasthi N, Haseli S, Johri U C, Salimi S, Dolatkhah H 2020 Quantum Inf. Process. 19 10Google Scholar
[49] Wang G Y, Guo Y N, Zeng K 2019 J. Mod. Opt. 66 367Google Scholar
[50] 李丽娟, 明飞, 宋学科, 叶柳, 王栋 2022 物理学报 71 070302Google Scholar
Li L J, Ming F, Song X K, Ye L, Wang D 2022 Acta Phys. Sin. 71 070302Google Scholar
[51] Hajihoseinlou H, Ahansaz B 2024 Laser Phys. 34 075202Google Scholar
[52] Daffer S, Wodkiewicz K, Cresser J D, McIver J K 2004 Phys. Rev. A 70 010304(RGoogle Scholar
[53] Cai X 2020 Sci. Rep. 10 88Google Scholar
[54] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401Google Scholar
[55] Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar
[56] Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J Dong, Ye L, Kais S 2017 Sci. Rep. 7 1066Google Scholar
[57] Xu Z Y, Yang W L, Feng M 2012 Phys. Rev. A 86 012113Google Scholar
[58] Hu M L, Zhou W 2019 Laser Phys. Lett. 16 045201Google Scholar
[59] Hu M L, Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322Google Scholar
[60] Hu M L, Zhang Y H, Fan H 2021 Chin. Phys. B 30 030308Google Scholar
[61] Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar
[62] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar
[63] Mazzola L, Piilo J, Maniscalco S 2011 Int. J. Quantum Inf. 09 981Google Scholar
[64] Pati A K, Wilde M M, Devi A R U, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105Google Scholar
[65] Hu M L, Fan H 2013 Phys. Rev. A 88 014105Google Scholar
[66] Hu M L, Fan H 2013 Phys. Rev. A 87 022314Google Scholar
Catalog
Metrics
- Abstract views: 760
- PDF Downloads: 44
- Cited By: 0