Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation of entropic uncertainty relation in correlated channels with dephasing colored noise

Yu Min Guo You-Neng

Citation:

Regulation of entropic uncertainty relation in correlated channels with dephasing colored noise

Yu Min, Guo You-Neng
PDF
Get Citation
  • The uncertainty principle which restricts the observer’s ability to make precise measurements of two incompatible observables plays a crucial role in quantum precision measurement within the field of quantum information science. When quantum systems interact with their surroundings, they inevitably result in decoherence, which increases the uncertainty of the system. In the process of quantum information processing, the effective regulation of uncertainty becomes a key problem to be solved. In this work, we investigate the quantum-memory-assisted entropic uncertainty relation of a two-qubit system under correlated channels with dephasing colored noise. We demonstrate that it is possible to control the entropic uncertainty, denoted as U, and its lower bound, Ub, by combining correlations between successive uses of channels and the non-Markovianity of the dynamical evolution. Firstly, the evolutionary characteristics of the trace distance are employed to distinguish between Markovianity and non-Markovianity of the channel. Subsequently, the system is selected to be either a maximally entangled or separated state initially. By adjusting the strength of the correlations h, we find that with the increase of η, the entropic uncertainty and its lower bound decrease. Especially, if the channel is fully correlated (η = 1), the entropic uncertainty and its lower bound remain constant under the channel, indicating that decoherence is completely suppressed. A comparison of Markovian and non-Markovian channels reveals that the entropic uncertainty and its lower bound exhibit oscillatory behaviour under non-Markovian channels. The combination of correlations and non-Markovianity of the channel demonstrates that the entropic uncertainty and its lower bound can be reduced under fully correlated channels where the non-Markovianity has no effect. This is because fully correlated channels suppress decoherence to the greatest extent. Under partially correlated channels, the combination of correlations and non-Markovianity can result in a more effective reduction in the entropic uncertainty and its lower bound. Under such channels, correlations of the channel decrease the entropic uncertainty and its lower bound during the whole evolution, while the non-Markovianity contributes to the oscillations of them and reduce them in some specific time. Furthermore, the results show that the entropic uncertainty and its lower bound reach steady values that depend only on the strength of the correlations after long-time evolution. In other words, the stronger the correlations, the lower the entropic uncertainty and its lower bound of steady states. Finally, we analyse the physical nature of the decrease of the entropic uncertainty and its lower bound, and it is found that the decrease of the entropic uncertainty and its lower bound is due to the increase of the quantum correlations in the system.
  • [1]

    Heisenberg W 1927 Z. Phys. 43172

    [2]

    Robertson H P 1929 Phys. Rev. 34163

    [3]

    Deutsch D 1983 Phys. Rev. Lett. 50631

    [4]

    Kraus K 1987 Phys. Rev. D 353070

    [5]

    Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 601103

    [6]

    Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6659

    [7]

    Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7757

    [8]

    Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7752

    [9]

    Shi J, Ding Z, Wu T, He J, Yu L, Sun W, Wang D and Ye L 2017 Laser Phys. Lett. 14125208

    [10]

    Hall M J W, Cerf N J 2012 New J. Phys. 14033040

    [11]

    Ekert A K 1991 Phys. Rev. Lett 67661

    [12]

    Renes J M, Boileau J C 2009 Phys. Rev. Lett 103020402

    [13]

    Haseli S, Dolatkhah H, Rangani Jahromi H, Salimi S, Khorashad A S 2020 Opt. Commun. 461125287

    [14]

    Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3634

    [15]

    Ng N H Y, Berta M, Wehner S 2012 Phys. Rev. A 86042315

    [16]

    Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17267

    [17]

    Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133114802

    [18]

    Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14055205

    [19]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80800

    [20]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 8172

    [21]

    Wang T Y, Wang D 2024 Phys. Lett. B 855138876

    [22]

    Wang T Y, Wang D 2014 Phys. Lett. A 499129364

    [23]

    Wu L, Ye L, Wang D 2022 Phys. Rev. A 106062219

    [24]

    Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104062204

    [25]

    Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102012206

    [26]

    Bouafia Z, Oumennana M, Mansour M, Ouchni F 2024 Appl. Phys. B 13094

    [27]

    Abdel-Wahab N H, Ibrahim T A S, Amin M E, Salah A 2024 Eur. Phys. J. D 7828

    [28]

    Macchiavello C, Palma G M 2002 Phys. Rev. A 65050301

    [29]

    D'Arrigo A, Benenti G, Falci G 2007 New. J. Phys. 9310

    [30]

    D'Arrigo A, Benenti G, Falci G 2013 Phys. Rev. A 88042337

    [31]

    Sk R, Panigrehi P K 2024 Phys. Rev. A 109032425

    [32]

    Guo Y N, Fang M F, Wang G Y, Zeng K 2016 Quantum Inf. Process. 155129-5144

    [33]

    Peng Z Y, Wu F L, Li J, Xue H N, Liu S Y, Wang Z Y 2023 Phys. Rev. A 107022405

    [34]

    Yu M, Guo Y N 2024 Int. J. Theor. Phys 63156

    [35]

    Xie Y X, Qin Z Y 2020 Quantum Inf. Process. 19375

    [36]

    Dong Yao, Ji A L, Zhang G F 2022 Acta Phys. Sin. 71070303(in Chinese) [董曜、纪爱玲、张国锋 2022 物理学报 71070303]

    [37]

    Zhang D H, Wu F L, Peng Z Y, Wang L, Liu S Y 2023 Quantum Inf. Process. 22102

    [38]

    Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100052305

    [39]

    Haseli S, Hadipour M 2022 Int. J. Theor. Phys 61117

    [40]

    Awasthi N, Joshi D K, Sachdev S 2022 Int. J. Theor. Phys 61123

    [41]

    Hou L, Zhang Y N, Zhu Y G 2024 Int. J. Theor. Phys 62221

    [42]

    Lindblad G 1976 Comm. Math. Phys 48119-130

    [43]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101150402

    [44]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 910

    [45]

    Hwang B, Goan H S 2012 Phys. Rev. A 85032321

    [46]

    Banu H, Rao K R 2024 Eur. Phys. J. Plus 139436

    [47]

    Addis C, Karpat G, Macchiavello C, Maniscalco 2016 Phys. Rev. A 94032121

    [48]

    AWasthi N, Haseli S, Johri U C, Salimi S, Dolatkhah H 2020 Quantum Inf. Process. 1910

    [49]

    Wang G Y, Guo Y N, Zeng K 2018 Journal of Modern Optics 66367-376

    [50]

    Li L J, Ming F, Song X K, Liu Y, Wang Dong 2022 Acta Phys. Sin. 71070302(in Chinese) [李丽娟、明飞、 宋学科、叶柳、王栋 2022 物理学报 71070302]

    [51]

    Hajihoseinlou H, Ahansaz B 2024 Laser Phys. 34075202

    [52]

    Daffer S, Wodkiewicz K, Cresser J D, McIver J K 2004 Phys. Rev. A 70010304(R)

    [53]

    Cai X 2020 Sci. Rep. 1088

    [54]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103210401

    [55]

    Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383977-984

    [56]

    Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J Dong, Ye L, Kais S 2017 Sci. Rep. 71066

    [57]

    Xu Z Y, Yang W L, Feng M 2012 Phys. Rev. A 86012113

    [58]

    Hu M L, Zhou W 2019 Laser Phys. Lett. 16045201

    [59]

    Hu M L, Fan H 2020 Sci. China-Phys. Mech. Astron 63230322

    [60]

    Hu M L, Zhang Y H, Fan H 2021 Chin. Phys. B 30030308

    [61]

    Wootters W K 1998 Phys. Rev. Lett. 802245

    [62]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88017901

    [63]

    Mazzola L, Piilo J, Maniscalco S 2011 Int. J. Quantum Inf. 09981-991

    [64]

    Pati A K, Wilde M M, Devi A R U, Rajagopal A K, Sudha 2012 Phys. Rev. A 86042105

    [65]

    Hu M L, Fan H 2013 Phys. Rev. A 88014105

    [66]

    Hu M L, Fan H 2013 Phys. Rev. A 87022314

  • [1] Jiang Shi-Min, Jia Xin-Yan, Fan Dai-He. Quantum non-local correlation testing of Werner state in non-Markovian environment. Acta Physica Sinica, doi: 10.7498/aps.73.20240450
    [2] Zeng Bai-Yun, Gu Peng-Yu, Jiang Shi-Min, Jia Xin-Yan, Fan Dai-He. Quantum nonlocality testing of the “X” state based on the CHSH inequality in Markov environment. Acta Physica Sinica, doi: 10.7498/aps.72.20222218
    [3] Zhang Shi-Qi, Yang Hua-Tong. Quantitative description of uncertainty andentropic uncertainty relation. Acta Physica Sinica, doi: 10.7498/aps.72.20222443
    [4] Hu Qiang, Zeng Bai-Yun, Gu Peng-Yu, Jia Xin-Yan, Fan Dai-He. Testing quantum nonlocality of two-qubit entangled states under decoherence. Acta Physica Sinica, doi: 10.7498/aps.71.20211453
    [5] Zeng Bai-Yun, Gu Peng-Yu, Hu Qiang, Jia Xin-Yan, Fan Dai-He. Quantum nonlocal test of “X” state based on geometric interpretation of CHSH inequality. Acta Physica Sinica, doi: 10.7498/aps.71.20220445
    [6] He Zhi, Jiang Deng-Kui, Li Yan. Non-Markovian measure independent of initial states of open systems. Acta Physica Sinica, doi: 10.7498/aps.71.20221053
    [7] Li Li-Juan, Ming Fei, Song Xue-Ke, Ye Liu, Wang Dong. Review on entropic uncertainty relations. Acta Physica Sinica, doi: 10.7498/aps.71.20212197
    [8] Zhang Jin-Feng, Arapat Ablimit, Yang Fan, Akbar Hamutjan, Tang Shi-Sheng, Ahmad Abliz. Effects of Kaplan-Shekhtman-Entin-Wohlman-Aharony interaction on quantum discord of non-markovian dynamics under different magnetic fields. Acta Physica Sinica, doi: 10.7498/aps.70.20211277
    [9] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, doi: 10.7498/aps.70.20210923
    [10] Liu Jin, Miao Bo, Jia Xin-Yan, Fan Dai-He. Testing quantum nonlocality with high probability using quantum mixed state based on hardy-type paradox. Acta Physica Sinica, doi: 10.7498/aps.68.20191125
    [11] Yang Yang, Wang An-Min, Cao Lian-Zhen, Zhao Jia-Qiang, Lu Huai-Xin. Correlation and coherence for two-qubit system coupled to XY spin chains. Acta Physica Sinica, doi: 10.7498/aps.67.20180812
    [12] You Bo, Cen Li-Xiang. Phenomena of limit cycle oscillations for non-Markovian dissipative systems undergoing long-time evolution. Acta Physica Sinica, doi: 10.7498/aps.64.210302
    [13] Qin Meng, Li Yan-Biao, Bai Zhong. Effects of inhomogeneous magnetic field and magnetic impurity on the quantum correlation of spin-1 system. Acta Physica Sinica, doi: 10.7498/aps.64.030301
    [14] Li Jing, Zhao Yong-Jun, Li Dong-Hai. Time delay estimation using Markov Chain Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.63.130701
    [15] Xie Mei-Qiu, Guo Bin. Thermal quantum discord in Heisenberg XXZ model under different magnetic field conditions. Acta Physica Sinica, doi: 10.7498/aps.62.110303
    [16] Fan Kai-Ming, Zhang Guo-Feng. The dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings model. Acta Physica Sinica, doi: 10.7498/aps.62.130301
    [17] Yang Yang, Wang An-Min. Quantum correlation for a central two-qubit system coupled to Ising chain. Acta Physica Sinica, doi: 10.7498/aps.62.130305
    [18] Hou Zhou-Guo, He Yi-Gang, Li Bing. Radio frequency identification anti-collision test based on Markov chain model. Acta Physica Sinica, doi: 10.7498/aps.60.025211
    [19] WANG HONG-WEI. ELECTRON CORRELATION IN QUANTUM WELLS. Acta Physica Sinica, doi: 10.7498/aps.46.1618
    [20] HUANG XIANG-YOU. THE CLASSICAL ANALOGY OF UNCERTAINTY RELATION. Acta Physica Sinica, doi: 10.7498/aps.45.353
Metrics
  • Abstract views:  108
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  08 October 2024

/

返回文章
返回