Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review on entropic uncertainty relations

Li Li-Juan Ming Fei Song Xue-Ke Ye Liu Wang Dong

Citation:

Review on entropic uncertainty relations

Li Li-Juan, Ming Fei, Song Xue-Ke, Ye Liu, Wang Dong
PDF
HTML
Get Citation
  • The Heisenberg uncertainty principle is one of the characteristics of quantum mechanics. With the vigorous development of quantum information theory, uncertain relations have gradually played an important role in it. In particular, in order to solved the shortcomings of the concept in the initial formulation of the uncertainty principle, we brought entropy into the uncertainty relation, after that, the entropic uncertainty relation has exploited the advantages to the full in various applications. As we all know the entropic uncertainty relation has became the core element of the security analysis of almost all quantum cryptographic protocols. This review mainly introduces development history and latest progress of uncertain relations. After Heisenberg's argument that incompatible measurement results are impossible to predict, many scholars, inspired by this viewpoint, have made further relevant investigations. They combined the quantum correlation between the observable object and its environment, and carried out various generalizations of the uncertainty relation to obtain more general formulas. In addition, it also focuses on the entropy uncertainty relationship and quantum-memory-assisted entropic uncertainty relation, and the dynamic characteristics of uncertainty in some physical systems. Finally, various applications of the entropy uncertainty relationship in the field of quantum information are discussed, from randomnesss to wave-particle duality to quantum key distribution.
      Corresponding author: Wang Dong, dwang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075001, 61601002, 12004006, 12175001), the Natural Science Foundation of Anhui Province, China (Grant No. 1508085QF139), and the Fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701)
    [1]

    Heisenberg W 1927 Z. Phys. 43 172Google Scholar

    [2]

    Kennard E H 1927 Z. Phys. 44 326Google Scholar

    [3]

    Robertson H P 1929 Phys. Rev. 34 163Google Scholar

    [4]

    Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar

    [5]

    Everett H 1957 Rev. Mod. Phys. 29 454Google Scholar

    [6]

    Hirschman I I 1957 Am. J. Math. 79 152Google Scholar

    [7]

    Kraus K 1987 Phys. Rev. D 35 3070Google Scholar

    [8]

    Maassen H, Uffink J 1988 Phys. Rev. Lett. 60 1103Google Scholar

    [9]

    Berta M, Christandl M, Colbeck R, Renes J M, Renner R 2010 Nat. Phys. 6 659Google Scholar

    [10]

    Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402Google Scholar

    [11]

    Schrödinger E 1930 Physikalisch-Mathematische Klasse 14 296

    [12]

    Maccone L, Pati A K 2014 Phys. Rev. Lett. 113 260401Google Scholar

    [13]

    Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S, Xue P 2016 Phys. Rev. A 93 052108Google Scholar

    [14]

    Xiao L, Wang K, Zhan X, Bian Z, Li J, Zhang Y, Xue P, Pati A K 2017 Opt. Express 25 17904Google Scholar

    [15]

    Fan B, Wang K K, Xiao L, Xue P 2018 Phys. Rev. A 98 032118Google Scholar

    [16]

    Białynicki-Birula I, Mycielski J 1975 Commun. Math. Phys. 44 129Google Scholar

    [17]

    Shannon C 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [18]

    Korzekwa K, Lostaglio M, Jennings D, Rudolph T 2014 Phys. Rev. A 89 042122Google Scholar

    [19]

    Rényi A 1961 Proceedings of the 4th Berkeley Symposiumon Mathematical Statistics and Probability (Vol. 1) (Berkeley: University of California Press) pp547–561

    [20]

    Dodonov V V, Dodonov A V 2015 Phys. Scr. 90 074049Google Scholar

    [21]

    Rastegin A E 2019 Ann. Phys. 531 1800466Google Scholar

    [22]

    Pegg D T 1998 Phys. Rev. A 58 4307Google Scholar

    [23]

    Partovi M H 2011 Phys. Rev. A 84 052117Google Scholar

    [24]

    Friedland S, Gheorghiu V, Gour G 2013 Phys. Rev. Lett. 111 230401Google Scholar

    [25]

    Puchała Z, Rudnicki Ł, Życzkowski K 2013 J. Phys. A 46 272002Google Scholar

    [26]

    Nielsen M A, Chuang I L (translated by Zheng D Z and Zhao Q C) 2005 Quantum Computation and Quantum Information (Beijing: Tsinghua University Press) pp155–157

    [27]

    Li C F, Xu J S, Xu X Y, Li K, Guo G C 2011 Nat. Phys. 7 752Google Scholar

    [28]

    Prevedel R, Hamel D R, Colbeck R, Fisher K, Resch K J 2011 Nat. Phys. 7 757Google Scholar

    [29]

    Xu Z Y, Zhu S Q, Yang W L 2012 Appl. Phys. Lett. 101 244105Google Scholar

    [30]

    Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105Google Scholar

    [31]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [32]

    Hu M L, Fan H 2013 Phys. Rev. A 88 014105Google Scholar

    [33]

    Bera M N, Prabhu R, Sen (De) A, Sen U 2012 Phys. Rev. A 86 012319Google Scholar

    [34]

    Coles P J, Piani M 2014 Phys. Rev. A 89 022112Google Scholar

    [35]

    Adabi F, Salimi S, Haseli S 2016 Phys. Rev. A 93 062123Google Scholar

    [36]

    Haseli S, Ahmadi F 2019 Eur. Phys. J. D 73 65Google Scholar

    [37]

    Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar

    [38]

    Liu S, Mu L Z, Fan H 2015 Phys. Rev. A 91 042133Google Scholar

    [39]

    Zhang J, Zhang Y, Yu C S 2015 Sci. Rep. 5 11701Google Scholar

    [40]

    Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2019 Quantum Inf. Process. 18 13Google Scholar

    [41]

    Hu M L, Fan H 2013 Phys. Rev. A 87 022314Google Scholar

    [42]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [43]

    Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar

    [44]

    Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2020 Phys. Rev. A 102 052227Google Scholar

    [45]

    Yao Y B, Wang D, Ming F, Ye L 2020 J. Phys. B: At. Mol. Opt. Phys. 53 035501Google Scholar

    [46]

    Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Sci. Rep. 7 1066Google Scholar

    [47]

    Wang D, Shi W N, Ming F, Hoehn R D, Sun W Y, Ye L, Kais S 2018 Quantum Inf. Process. 17 335Google Scholar

    [48]

    Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar

    [49]

    Karpat G, Piilo J, Maniscalco S 2015 EPL 111 50006Google Scholar

    [50]

    Chen P F, Ye L, Wang D 2019 Eur. Phys. J. D 73 108Google Scholar

    [51]

    Feng J, Zhang Y Z, Gould M D, Fan H 2015 Phys. Lett. B 743 198Google Scholar

    [52]

    Huang J L, Shu F W, Xiao Y L, Yung M H 2018 Eur. Phys. J. C 78 545Google Scholar

    [53]

    Zhang Z Y, Liu J M, Hu Z F, Wang Y Z 2018 Ann. Phys. 530 1800208Google Scholar

    [54]

    Ming F, Wang D, Ye L 2019 Ann. Phys. 531 1900014Google Scholar

    [55]

    Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S, Ye L 2018 Ann. Phys. 530 1800080Google Scholar

    [56]

    Huang A J, Wang D, Wang J M, Shi J D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 204Google Scholar

    [57]

    Wang D, Ming F, Huang A J, Sun W Y, Ye L 2017 Laser Phys. Lett. 14 095204Google Scholar

    [58]

    Ming F, Wang D, Shi W N, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 89Google Scholar

    [59]

    Wang D, Huang A J, Ming F, Sun W Y, Lu H P, Liu C C, Ye L 2017 Laser Phys. Lett. 14 065203Google Scholar

    [60]

    Zheng X, Zhang G F 2017 Quantum Inf. Process. 16 1Google Scholar

    [61]

    Huang Z M 2018 Laser Phys. Lett. 15 025203Google Scholar

    [62]

    Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar

    [63]

    Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D, Ye L 2019 Front. Phys. 14 31601Google Scholar

    [64]

    Zhang Z Y, Wei D X, Liu J M 2018 Laser Phys. Lett. 15 065207Google Scholar

    [65]

    Shi W N, Ming F, Wang D, Ye L 2019 Quantum Inf. Process. 18 70Google Scholar

    [66]

    Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802Google Scholar

    [67]

    Ju F H, Zhang Z Y, Liu J M 2020 Commun. Theor. Phys. 72 125102Google Scholar

    [68]

    Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205Google Scholar

    [69]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [70]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728Google Scholar

    [71]

    Ming F, Wang D, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 9Google Scholar

    [72]

    Zhang Y L, Fang M F, Kang G D, Zhou Q P 2018 Quantum Inf. Process. 17 62Google Scholar

    [73]

    Chen P F, Sun W Y, Ming F, Huang A J, Wang D, Ye L 2019 Laser Phys. Lett. 15 015206

    [74]

    Haseil S, Dolatkhah H, Salimi S, Khorashad A S 2019 Laser Phys. Lett. 16 045207Google Scholar

    [75]

    Guo Y N, Fang M F, Tian Q L, Li Z D, Zeng K 2018 Laser Phys. Lett. 15 105205Google Scholar

    [76]

    Su Q, Al-Amri M, Davidovich L, Suhail Zubairy M 2010 Phys. Rev. A 82 052323Google Scholar

    [77]

    Huang A J, Shi J D, Wang D, Ye L 2017 Quantum Inf. Process. 16 46Google Scholar

    [78]

    Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243

    [79]

    Shi W N, Wang D, Sun W Y, Ming F, Huang A J, Ye L 2018 Laser Phys. Lett. 15 075202Google Scholar

    [80]

    Yu M, Fang M F 2017 Quantum Inf. Process. 16 213Google Scholar

    [81]

    Adabi F, Haseli S, Salimi S 2016 EPL 115 60004Google Scholar

    [82]

    Hu M L, Fan H 2012 Phys. Rev. A 86 032338Google Scholar

    [83]

    Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555Google Scholar

    [84]

    Wiseman H M, Jones S J, Doherty A C 2007 Phys. Rev. Lett. 98 140402Google Scholar

    [85]

    Walborn S P, Salles A, Gomes R M, Toscano F, Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402Google Scholar

    [86]

    Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G, Howell J C 2013 Phys. Rev. A 87 062103Google Scholar

    [87]

    Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L, Chen K 2016 Phys. Rev. A 93 012108Google Scholar

    [88]

    Vadhan S P 2012 Found. Trends Theor. Comput. Sci. 7 1Google Scholar

    [89]

    Canetti R 2001 Proc. IEEE Symposium on Foundations of Computer Science 2001 Newport Beach, CA, USA, October 8–11, 2001 p136–145

    [90]

    Unruh D 2010 Proceedings of 29th Annual International Conference on Theory and Applications of Cryptographic Techniques France, May 30–June 03, 2010 pp486–505

    [91]

    Mclnnes J 1987 Technical Report 194/87, Department of Computer Science, University of Toronto

    [92]

    Impagliazzo R, Levin L A, Luby M 1989 Proceedings of ACM STOC 1989 Washington, Seattle, USA, May 14–17, 1989 pp12–24

    [93]

    Impagliazzo R, Zuckerman D 1989 Proceedings of the 30th Annual Symp On Foundations of Computer Science Research Triangle Park, North Carolina, USA, October 30-November 01, 1989 pp248–253

    [94]

    Renner R 2005 Ph.D. Dissertation (Zurich: ETH)

    [95]

    Renner R, König R 2005 Proceedings of the 2nd Theory of Cryptography Conference Cambridge, England, February 10–12, 2005 pp407–425

    [96]

    Gavinsky D, Kempe J, Kerenidis I, Raz R, de Wolf R 2009 SIAM J. Comput. 38 1695Google Scholar

    [97]

    Tomamichel M, Renner R 2011 Phys. Rev. Lett. 106 110506Google Scholar

    [98]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524Google Scholar

    [99]

    Vallone G, Marangon D G, Tomasin M, Villoresi P 2014 Phys. Rev. A 90 052327Google Scholar

    [100]

    Miller C A, Shi Y 2014 Proceedings of ACM STOC 2014 New York, USA, May 31–June 03 2014 pp417–426

    [101]

    Wootters W, Zurek W H 1979 Phys. Rev. D 19 473Google Scholar

    [102]

    Jaeger G, Shimony A, Vaidman L 1995 Phys. Rev. A 51 54Google Scholar

    [103]

    Englert B G 1996 Phys. Rev. Lett. 77 2154Google Scholar

    [104]

    Englert B G, Bergou J A 2000 Opt. Commun. 179 337Google Scholar

    [105]

    Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002Google Scholar

    [106]

    Dürr S, Rempe G 2000 Am. J. Phys. 68 1021Google Scholar

    [107]

    Busch P, Shilladay C 2006 Phys. Rep. 435 1Google Scholar

    [108]

    Coles P J, Kaniewski J, Wehner S 2014 Nat. Commun. 5 5814Google Scholar

    [109]

    Bosyk G M, Portesi M, Holik F, Plastino A 2013 Phys. Scr. 87 065002Google Scholar

    [110]

    Vaccaro J A 2011 Proc. R. Soc. A 468 1065

    [111]

    Englert B G, Kaszlikowski D, Kwek L C, Chee W H 2008 Int. J. Quantum Inf. 06 129Google Scholar

    [112]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing 1984 Bangalore, India, December 10–12 1984 pp175–179

    [113]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [114]

    Scarani V, Bechmann-Pasquinucci H, Cerf N, Dusek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [115]

    Wootters W K, Zurek W H 1982 Nature 299 802Google Scholar

    [116]

    Mayers D 1996 Collection in Lecture Notes in Computer Science (Springer, New York) p343

    [117]

    Biham E, Boyer M, Boykin P O, Mor T, Roychowdhury V 2006 J. Cryptol. 19 381Google Scholar

    [118]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [119]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [120]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902Google Scholar

    [121]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905Google Scholar

    [122]

    Koashi M 2006 J. Phys. Conf. Ser. 36 98Google Scholar

    [123]

    Dupuis F, Fawzi O, Wehner S 2015 IEEE Trans. Inf. Theory 61 1093Google Scholar

    [124]

    König R, Wehner S, Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962Google Scholar

    [125]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [126]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [127]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [128]

    Coles P J, Yu L, Gheorghiu V, Griffiths R 2011 Phys. Rev. A 83 062338Google Scholar

    [129]

    Luo S L 2005 Theor. Math. Phys. 143 681Google Scholar

    [130]

    Yang Y Y, Ye L, Wang D 2020 Ann. Phys. 532 2000062Google Scholar

    [131]

    Cao Y, Wang D, Fan X G, Ming F, Wang Z Y, Ye L 2021 Commun. Theor. Phys. 73 015101Google Scholar

    [132]

    Ming F, Song X K, Ling J J, Ye L, Wang D 2020 Eur. Phys. J. C 80 275Google Scholar

    [133]

    Berta M, Wehner S, Wilde M M 2016 New J. Phys. 18 073004Google Scholar

    [134]

    IBM 2016 “IBM Quantum Experience.”

    [135]

    Ma W C, Ma Z H, Wang H Y, Chen Z H, Liu Y, Kong F, Li Z K, Peng X H, Shi M J, Shi F Z, Fei S M, Du J F 2016 Phys. Rev. Lett. 116 160405Google Scholar

    [136]

    Ringbauer M, Biggerstaff D N, Broome M A, Fedrizzi A, Branciard C, White A G 2014 Phys. Rev. Lett. 112 020401Google Scholar

    [137]

    Zhou F, Yan L L, Gong S J, Ma Z H, He J Z, Xiong T P, Chen L, Yang W L, Feng M, Vedral V 2016 Sci. Adv. 2 e1600578Google Scholar

    [138]

    Romera E, Calixto M 2015 J. Phys. Condens. Matter 27 175003Google Scholar

    [139]

    Xiong S J, Sun Z, Liu J M 2020 Laser Phys. Lett. 17 095203Google Scholar

    [140]

    Feng J, Zhang Y Z, Gould M D, Fan H 2013 Phys. Lett. B 726 527Google Scholar

    [141]

    Jia L, Tian Z, Jing J 2015 Ann. Phys. 353 37Google Scholar

    [142]

    Hayden P, Preskill J 2007 J. High Energy Phys. 09 120

  • 图 1  每个从粒子源发出的粒子都是用PQ来测量的, 测量的选择是随机的. 不确定关系指出我们不能预测PQ的测量结果

    Figure 1.  Each particle emitted from the particle source is measured by P or Q, and the choice of measurement is random. The uncertainty relation indicates that we cannot predict the outcomes of both P and Q

    图 2  玩家Alice和Bob的猜测游戏. 首先, Bob准备$ \rho_A $并把A发送给Alice. 然后, Alice以相等的概率进行$ \mathbb{Q} $$ {\mathbb{R}} $测量, 并将测量选项存储在Θ中. 第三, Alice得出测量结果并将其存储在K, 且向Bob透露测量选择Θ. Bob的任务是猜测K (给定Θ)

    Figure 2.  A guessing game between players Alice and Bob. First, Bob prepares $ \rho_A $ and sends A to Alice. Then, Alice performs measurement $ \mathbb{Q} $ or $ {\mathbb{R}} $ with equal probability on A, and stores the measurement options in Θ. Third, Alice stores the measurement result in the K bit and tells Bob about her option Θ. Bob’s task is to guess K (given Θ).

    图 3  量子存储下的不确定游戏. 首先, Bob准备态${\boldsymbol{\rho}} _{AB}$, 然后把子系统A发送给Alice. 第二, Alice对A进行${Q} $$ {{R}} $ 测量, 然后向Bob告知测量选择Θ. Bob的任务是正确猜测K

    Figure 3.  The guessing game with a quantum memory system. First, Bob prepares $ \rho_{AB} $ and sends A to Alice, Then, Alice performs measurement $ {Q} $ or $ {{R}} $ on A, and stores the measurement options in Θ. Third, Alice tells Bob about her option Θ. Bob’s task is to guess K correctly

    图 4  三粒子量子存储器设置图. 首先, 粒子源准备$ {\boldsymbol{\rho}} _{ABC} $, 并将A发送给Alice, B发送给Bob, C给Charlie. 接着, Alice在A上进行XZ测量, 然后在已经给Bob粒子B的情况下, 询问Bob关于Alice的X测量结果的不确定性, 在已经给Charlie粒子C的情况下询问Charlie有关Alice的Z测量结果的不确定性. 只有他们两个同时猜出结果K这个游戏才能算Bob和Charlie胜利

    Figure 4.  The tripartite quantum memory setup. First, the particle source prepares $ {\boldsymbol{\rho }}_{ABC} $, and sends A to Alice, B to Bob, and C to Charlie. Next, Alice performs measurement X or Z on A, and asks Bob about the uncertainty of Alice’s X measurement outcome, ask Charlie about the uncertainty of Alice’s Z measurement outcome. Only both of them guessed that the output is K, the game can be considered a victory for Bob and Charlie.

    图 5  这两张图引用自参考文献[44] 中的第三, 四幅图, 图片展示了Ming等的结果(图上的Ref. [45]就是本文参考文献[43])和Dolatkhah等结果的对比, 这里选取的测量是泡利测量:$ X = {\sigma _x}, Z = {\sigma _z} $. 图中蓝线是式(61)左式, 红线对应右式, 重合表明对应的量子态、界与不确定度重合. (a) 广义W态量子存储下的熵不确定度及下界的图像. (b)混合三比特态量子存储下的熵不确定度及下界的图像

    Figure 5.  These two pictures are quoted in the third and fourth pictures in the reference [44].The picture shows the comparison of the results of Ming et al. (Ref. [45] on the picture is the reference [43] in this text) and Dolatkhah et al.. The measurement selected here is the Pauli measurement: $ X = {\sigma _x}, Z = {\sigma _z} $. The blue line in the figure is the left side of the formula (61), and the red line corresponds to the right side. Their overlap indicates the corresponding quantum state, and the bounds coincide with the uncertainty. (a) Different lower bounds of the tripartite quantum-memory-assisted entropic uncertainty relation (QMA-EUR) for the generalized W state; (b) Different lower bounds of the tripartite QMA-EUR for symmetric family of mixed three-qubit states

    图 6  这张图引用自参考文献[105]中的第18幅图, 展示的是一个Mach-Zehnder单光子干涉仪. 一个光子撞击分束器, 然后通过$ {{Z}} $的基态$ | 0 \rangle, | 1 \rangle $标记这两个可能的路径, 光子可能与干涉仪内部的某个环境E相互作用. 然后将一个相位ϕ应用于下路径, 再将这两个路径在第二个波束分束器上重新组合. 最后在$ {\rm{D}}_0 $$ {\rm{D}}_1 $处检测到光子

    Figure 6.  This picture is from the 18 th picture in the reference [105]. The picture shows a Mach-Zehnder single photon interferometer. A photon hits the beam splitter, and then we pass the ground state of $ {{Z}} $ ($ | 0 \rangle, | 1 \rangle $) to mark these two possible paths. The photon may be related to an environment in the interferometer $ E $ Interaction. Then apply a phase ϕ to the lower path, and then recombine the two paths on the second beam splitter. Finally, a photon is detected at $ {\rm{D}}_0 $ or $ {\rm{D}}_1 $

  • [1]

    Heisenberg W 1927 Z. Phys. 43 172Google Scholar

    [2]

    Kennard E H 1927 Z. Phys. 44 326Google Scholar

    [3]

    Robertson H P 1929 Phys. Rev. 34 163Google Scholar

    [4]

    Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar

    [5]

    Everett H 1957 Rev. Mod. Phys. 29 454Google Scholar

    [6]

    Hirschman I I 1957 Am. J. Math. 79 152Google Scholar

    [7]

    Kraus K 1987 Phys. Rev. D 35 3070Google Scholar

    [8]

    Maassen H, Uffink J 1988 Phys. Rev. Lett. 60 1103Google Scholar

    [9]

    Berta M, Christandl M, Colbeck R, Renes J M, Renner R 2010 Nat. Phys. 6 659Google Scholar

    [10]

    Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402Google Scholar

    [11]

    Schrödinger E 1930 Physikalisch-Mathematische Klasse 14 296

    [12]

    Maccone L, Pati A K 2014 Phys. Rev. Lett. 113 260401Google Scholar

    [13]

    Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S, Xue P 2016 Phys. Rev. A 93 052108Google Scholar

    [14]

    Xiao L, Wang K, Zhan X, Bian Z, Li J, Zhang Y, Xue P, Pati A K 2017 Opt. Express 25 17904Google Scholar

    [15]

    Fan B, Wang K K, Xiao L, Xue P 2018 Phys. Rev. A 98 032118Google Scholar

    [16]

    Białynicki-Birula I, Mycielski J 1975 Commun. Math. Phys. 44 129Google Scholar

    [17]

    Shannon C 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [18]

    Korzekwa K, Lostaglio M, Jennings D, Rudolph T 2014 Phys. Rev. A 89 042122Google Scholar

    [19]

    Rényi A 1961 Proceedings of the 4th Berkeley Symposiumon Mathematical Statistics and Probability (Vol. 1) (Berkeley: University of California Press) pp547–561

    [20]

    Dodonov V V, Dodonov A V 2015 Phys. Scr. 90 074049Google Scholar

    [21]

    Rastegin A E 2019 Ann. Phys. 531 1800466Google Scholar

    [22]

    Pegg D T 1998 Phys. Rev. A 58 4307Google Scholar

    [23]

    Partovi M H 2011 Phys. Rev. A 84 052117Google Scholar

    [24]

    Friedland S, Gheorghiu V, Gour G 2013 Phys. Rev. Lett. 111 230401Google Scholar

    [25]

    Puchała Z, Rudnicki Ł, Życzkowski K 2013 J. Phys. A 46 272002Google Scholar

    [26]

    Nielsen M A, Chuang I L (translated by Zheng D Z and Zhao Q C) 2005 Quantum Computation and Quantum Information (Beijing: Tsinghua University Press) pp155–157

    [27]

    Li C F, Xu J S, Xu X Y, Li K, Guo G C 2011 Nat. Phys. 7 752Google Scholar

    [28]

    Prevedel R, Hamel D R, Colbeck R, Fisher K, Resch K J 2011 Nat. Phys. 7 757Google Scholar

    [29]

    Xu Z Y, Zhu S Q, Yang W L 2012 Appl. Phys. Lett. 101 244105Google Scholar

    [30]

    Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105Google Scholar

    [31]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901Google Scholar

    [32]

    Hu M L, Fan H 2013 Phys. Rev. A 88 014105Google Scholar

    [33]

    Bera M N, Prabhu R, Sen (De) A, Sen U 2012 Phys. Rev. A 86 012319Google Scholar

    [34]

    Coles P J, Piani M 2014 Phys. Rev. A 89 022112Google Scholar

    [35]

    Adabi F, Salimi S, Haseli S 2016 Phys. Rev. A 93 062123Google Scholar

    [36]

    Haseli S, Ahmadi F 2019 Eur. Phys. J. D 73 65Google Scholar

    [37]

    Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar

    [38]

    Liu S, Mu L Z, Fan H 2015 Phys. Rev. A 91 042133Google Scholar

    [39]

    Zhang J, Zhang Y, Yu C S 2015 Sci. Rep. 5 11701Google Scholar

    [40]

    Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2019 Quantum Inf. Process. 18 13Google Scholar

    [41]

    Hu M L, Fan H 2013 Phys. Rev. A 87 022314Google Scholar

    [42]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [43]

    Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar

    [44]

    Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2020 Phys. Rev. A 102 052227Google Scholar

    [45]

    Yao Y B, Wang D, Ming F, Ye L 2020 J. Phys. B: At. Mol. Opt. Phys. 53 035501Google Scholar

    [46]

    Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Sci. Rep. 7 1066Google Scholar

    [47]

    Wang D, Shi W N, Ming F, Hoehn R D, Sun W Y, Ye L, Kais S 2018 Quantum Inf. Process. 17 335Google Scholar

    [48]

    Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar

    [49]

    Karpat G, Piilo J, Maniscalco S 2015 EPL 111 50006Google Scholar

    [50]

    Chen P F, Ye L, Wang D 2019 Eur. Phys. J. D 73 108Google Scholar

    [51]

    Feng J, Zhang Y Z, Gould M D, Fan H 2015 Phys. Lett. B 743 198Google Scholar

    [52]

    Huang J L, Shu F W, Xiao Y L, Yung M H 2018 Eur. Phys. J. C 78 545Google Scholar

    [53]

    Zhang Z Y, Liu J M, Hu Z F, Wang Y Z 2018 Ann. Phys. 530 1800208Google Scholar

    [54]

    Ming F, Wang D, Ye L 2019 Ann. Phys. 531 1900014Google Scholar

    [55]

    Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S, Ye L 2018 Ann. Phys. 530 1800080Google Scholar

    [56]

    Huang A J, Wang D, Wang J M, Shi J D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 204Google Scholar

    [57]

    Wang D, Ming F, Huang A J, Sun W Y, Ye L 2017 Laser Phys. Lett. 14 095204Google Scholar

    [58]

    Ming F, Wang D, Shi W N, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 89Google Scholar

    [59]

    Wang D, Huang A J, Ming F, Sun W Y, Lu H P, Liu C C, Ye L 2017 Laser Phys. Lett. 14 065203Google Scholar

    [60]

    Zheng X, Zhang G F 2017 Quantum Inf. Process. 16 1Google Scholar

    [61]

    Huang Z M 2018 Laser Phys. Lett. 15 025203Google Scholar

    [62]

    Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267Google Scholar

    [63]

    Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D, Ye L 2019 Front. Phys. 14 31601Google Scholar

    [64]

    Zhang Z Y, Wei D X, Liu J M 2018 Laser Phys. Lett. 15 065207Google Scholar

    [65]

    Shi W N, Ming F, Wang D, Ye L 2019 Quantum Inf. Process. 18 70Google Scholar

    [66]

    Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802Google Scholar

    [67]

    Ju F H, Zhang Z Y, Liu J M 2020 Commun. Theor. Phys. 72 125102Google Scholar

    [68]

    Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205Google Scholar

    [69]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [70]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728Google Scholar

    [71]

    Ming F, Wang D, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 9Google Scholar

    [72]

    Zhang Y L, Fang M F, Kang G D, Zhou Q P 2018 Quantum Inf. Process. 17 62Google Scholar

    [73]

    Chen P F, Sun W Y, Ming F, Huang A J, Wang D, Ye L 2019 Laser Phys. Lett. 15 015206

    [74]

    Haseil S, Dolatkhah H, Salimi S, Khorashad A S 2019 Laser Phys. Lett. 16 045207Google Scholar

    [75]

    Guo Y N, Fang M F, Tian Q L, Li Z D, Zeng K 2018 Laser Phys. Lett. 15 105205Google Scholar

    [76]

    Su Q, Al-Amri M, Davidovich L, Suhail Zubairy M 2010 Phys. Rev. A 82 052323Google Scholar

    [77]

    Huang A J, Shi J D, Wang D, Ye L 2017 Quantum Inf. Process. 16 46Google Scholar

    [78]

    Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243

    [79]

    Shi W N, Wang D, Sun W Y, Ming F, Huang A J, Ye L 2018 Laser Phys. Lett. 15 075202Google Scholar

    [80]

    Yu M, Fang M F 2017 Quantum Inf. Process. 16 213Google Scholar

    [81]

    Adabi F, Haseli S, Salimi S 2016 EPL 115 60004Google Scholar

    [82]

    Hu M L, Fan H 2012 Phys. Rev. A 86 032338Google Scholar

    [83]

    Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555Google Scholar

    [84]

    Wiseman H M, Jones S J, Doherty A C 2007 Phys. Rev. Lett. 98 140402Google Scholar

    [85]

    Walborn S P, Salles A, Gomes R M, Toscano F, Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402Google Scholar

    [86]

    Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G, Howell J C 2013 Phys. Rev. A 87 062103Google Scholar

    [87]

    Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L, Chen K 2016 Phys. Rev. A 93 012108Google Scholar

    [88]

    Vadhan S P 2012 Found. Trends Theor. Comput. Sci. 7 1Google Scholar

    [89]

    Canetti R 2001 Proc. IEEE Symposium on Foundations of Computer Science 2001 Newport Beach, CA, USA, October 8–11, 2001 p136–145

    [90]

    Unruh D 2010 Proceedings of 29th Annual International Conference on Theory and Applications of Cryptographic Techniques France, May 30–June 03, 2010 pp486–505

    [91]

    Mclnnes J 1987 Technical Report 194/87, Department of Computer Science, University of Toronto

    [92]

    Impagliazzo R, Levin L A, Luby M 1989 Proceedings of ACM STOC 1989 Washington, Seattle, USA, May 14–17, 1989 pp12–24

    [93]

    Impagliazzo R, Zuckerman D 1989 Proceedings of the 30th Annual Symp On Foundations of Computer Science Research Triangle Park, North Carolina, USA, October 30-November 01, 1989 pp248–253

    [94]

    Renner R 2005 Ph.D. Dissertation (Zurich: ETH)

    [95]

    Renner R, König R 2005 Proceedings of the 2nd Theory of Cryptography Conference Cambridge, England, February 10–12, 2005 pp407–425

    [96]

    Gavinsky D, Kempe J, Kerenidis I, Raz R, de Wolf R 2009 SIAM J. Comput. 38 1695Google Scholar

    [97]

    Tomamichel M, Renner R 2011 Phys. Rev. Lett. 106 110506Google Scholar

    [98]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524Google Scholar

    [99]

    Vallone G, Marangon D G, Tomasin M, Villoresi P 2014 Phys. Rev. A 90 052327Google Scholar

    [100]

    Miller C A, Shi Y 2014 Proceedings of ACM STOC 2014 New York, USA, May 31–June 03 2014 pp417–426

    [101]

    Wootters W, Zurek W H 1979 Phys. Rev. D 19 473Google Scholar

    [102]

    Jaeger G, Shimony A, Vaidman L 1995 Phys. Rev. A 51 54Google Scholar

    [103]

    Englert B G 1996 Phys. Rev. Lett. 77 2154Google Scholar

    [104]

    Englert B G, Bergou J A 2000 Opt. Commun. 179 337Google Scholar

    [105]

    Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002Google Scholar

    [106]

    Dürr S, Rempe G 2000 Am. J. Phys. 68 1021Google Scholar

    [107]

    Busch P, Shilladay C 2006 Phys. Rep. 435 1Google Scholar

    [108]

    Coles P J, Kaniewski J, Wehner S 2014 Nat. Commun. 5 5814Google Scholar

    [109]

    Bosyk G M, Portesi M, Holik F, Plastino A 2013 Phys. Scr. 87 065002Google Scholar

    [110]

    Vaccaro J A 2011 Proc. R. Soc. A 468 1065

    [111]

    Englert B G, Kaszlikowski D, Kwek L C, Chee W H 2008 Int. J. Quantum Inf. 06 129Google Scholar

    [112]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing 1984 Bangalore, India, December 10–12 1984 pp175–179

    [113]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [114]

    Scarani V, Bechmann-Pasquinucci H, Cerf N, Dusek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [115]

    Wootters W K, Zurek W H 1982 Nature 299 802Google Scholar

    [116]

    Mayers D 1996 Collection in Lecture Notes in Computer Science (Springer, New York) p343

    [117]

    Biham E, Boyer M, Boykin P O, Mor T, Roychowdhury V 2006 J. Cryptol. 19 381Google Scholar

    [118]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [119]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [120]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902Google Scholar

    [121]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905Google Scholar

    [122]

    Koashi M 2006 J. Phys. Conf. Ser. 36 98Google Scholar

    [123]

    Dupuis F, Fawzi O, Wehner S 2015 IEEE Trans. Inf. Theory 61 1093Google Scholar

    [124]

    König R, Wehner S, Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962Google Scholar

    [125]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [126]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [127]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [128]

    Coles P J, Yu L, Gheorghiu V, Griffiths R 2011 Phys. Rev. A 83 062338Google Scholar

    [129]

    Luo S L 2005 Theor. Math. Phys. 143 681Google Scholar

    [130]

    Yang Y Y, Ye L, Wang D 2020 Ann. Phys. 532 2000062Google Scholar

    [131]

    Cao Y, Wang D, Fan X G, Ming F, Wang Z Y, Ye L 2021 Commun. Theor. Phys. 73 015101Google Scholar

    [132]

    Ming F, Song X K, Ling J J, Ye L, Wang D 2020 Eur. Phys. J. C 80 275Google Scholar

    [133]

    Berta M, Wehner S, Wilde M M 2016 New J. Phys. 18 073004Google Scholar

    [134]

    IBM 2016 “IBM Quantum Experience.”

    [135]

    Ma W C, Ma Z H, Wang H Y, Chen Z H, Liu Y, Kong F, Li Z K, Peng X H, Shi M J, Shi F Z, Fei S M, Du J F 2016 Phys. Rev. Lett. 116 160405Google Scholar

    [136]

    Ringbauer M, Biggerstaff D N, Broome M A, Fedrizzi A, Branciard C, White A G 2014 Phys. Rev. Lett. 112 020401Google Scholar

    [137]

    Zhou F, Yan L L, Gong S J, Ma Z H, He J Z, Xiong T P, Chen L, Yang W L, Feng M, Vedral V 2016 Sci. Adv. 2 e1600578Google Scholar

    [138]

    Romera E, Calixto M 2015 J. Phys. Condens. Matter 27 175003Google Scholar

    [139]

    Xiong S J, Sun Z, Liu J M 2020 Laser Phys. Lett. 17 095203Google Scholar

    [140]

    Feng J, Zhang Y Z, Gould M D, Fan H 2013 Phys. Lett. B 726 527Google Scholar

    [141]

    Jia L, Tian Z, Jing J 2015 Ann. Phys. 353 37Google Scholar

    [142]

    Hayden P, Preskill J 2007 J. High Energy Phys. 09 120

  • [1] Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng. Optical and hyperfine spectroscopic investigations on europium ions doped in yttrium orthosilicate waveguides fabricated by focused ion beam milling. Acta Physica Sinica, 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [2] Yu Min, Guo You-Neng. Regulation of entropic uncertainty relation in correlated channels with dephasing colored noise. Acta Physica Sinica, 2024, 73(22): 220301. doi: 10.7498/aps.73.20241171
    [3] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [4] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [5] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [7] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [8] Li Zong-Feng, Liu Duan-Cheng, Zhou Zong-Quan, Li Chuan-Feng. Atomic frequency comb optical memory in EuCl3·6H2O crystal. Acta Physica Sinica, 2021, 70(16): 160302. doi: 10.7498/aps.70.20210648
    [9] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [10] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [11] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [12] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [13] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [14] Yang Yang, Wang An-Min, Cao Lian-Zhen, Zhao Jia-Qiang, Lu Huai-Xin. Correlation and coherence for two-qubit system coupled to XY spin chains. Acta Physica Sinica, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [15] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [16] Sun Ying, Zhao Shang-Hong, Dong Chen. Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica, 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [17] Qin Meng, Li Yan-Biao, Bai Zhong. Effects of inhomogeneous magnetic field and magnetic impurity on the quantum correlation of spin-1 system. Acta Physica Sinica, 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [18] Xie Mei-Qiu, Guo Bin. Thermal quantum discord in Heisenberg XXZ model under different magnetic field conditions. Acta Physica Sinica, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [19] Fan Kai-Ming, Zhang Guo-Feng. The dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings model. Acta Physica Sinica, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [20] Yang Yang, Wang An-Min. Quantum correlation for a central two-qubit system coupled to Ising chain. Acta Physica Sinica, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
Metrics
  • Abstract views:  9945
  • PDF Downloads:  472
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2021
  • Accepted Date:  26 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回