搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷原子磁场调控的光量子存储

董亮 陈琳瑜 王兴昌 梁馨云 左瀛 陈洁菲

引用本文:
Citation:

基于冷原子磁场调控的光量子存储

董亮, 陈琳瑜, 王兴昌, 梁馨云, 左瀛, 陈洁菲

Optical quantum storage of cold atomic ensemble mediated by magnetic field

Dong Liang, Chen Linyu, Wang Xingchang, Liang Xinyun, Zuo Ying, Chen Jiefei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 光量子存储器在量子计算、量子传感、量子通信等领域有非常重要的地位。冷原子系统因其优异的量子相干特性、可控性和极佳的弱光场处理能力,成为实现高质量光量子态存储的重要平台之一。其中雪茄型结构的冷原子系综由于其光学深度可达 100 以上而具备高效的存储性能。然而外界不均匀的剩余磁场,使其存储寿命在实用过程中受到了极大地限制。本文研究了由囚禁线圈关断残余及环境涡旋电流产生的非均匀磁场引发的原子自旋退相干问题。理论和实验表明,直流磁场能提供量子化轴而且可抑制非均匀磁场的影响,并调控自旋退相干与重相干周期。进一步地,本文演示了在磁子能级的光学泵浦过程中泵浦光功率可有效控制原子布居占比,从而精准控制退相干和重相干发生的强度。基于以上磁场调控结果,本文提出了一种双时间点的光子纠缠态的产生、存储和测量方案。基于冷原子系综制备的光子对是窄线宽的,其在时间点上编码的光子纠缠态在长距离传输中更稳定。利用外加磁场的方式调控原子自旋波退相干重相干的周期时间,可以选择性地将双时间点的原子自旋波转化为对应时间的读光子,从而构建正交的时间点测量基矢。
    Optical quantum memory plays a critical role in fields such as quantum computing, quantum sensing, and quantum communication. Cold atomic systems, owing to their excellent quantum coherence, controllability, and exceptional capability in handling weak optical fields, have emerged as one of the key platforms for faithful optical quantum state storage. Among these, cigarette-shaped, with up to 2 cm or more, cold atomic ensembles exhibit over 85 % storage effciency due to their optical depth reaching 100 or more. However, further applications are significantly hindered by the limited storage lifetimes caused by inhomogeneous residual magnetic fields along the long atomic cloud. This study analyzes the issue of atomic spin decoherence induced by non-uniform magnetic field with linear gradient, and obtain the result that storage lifetime dramatically decreases with this increasing linear gradient. Further, we demonstrate that in our two-dimensional magneto-optical trap system with a longitudinal atom-light interaction length of 2.7 cm, a DC magnetic field can provide a quantization axis, suppress the effects of inhomogeneous fields,and regulate the cycles of spin dephasing and rephasing. With the proper setting for optical pumping process of magnetic quantum levels, adjusting the pump laser power effectively controls the atomic population distribution, thereby precisely optimizes the light storage effciency at different time bins, as shown in Fig. 7(a). Based on these findings, we propose a scheme for storage of time-bin entangled photon pairs, who are prepared at two different time slots of DLCZ process. A bias magnetic field on the generation MOT (left panel of Fig. 7) induces modulation on the storage time as (a), so that read pulse exerted on rj reads only wj (j= 1, 2). Therefore, the two photonic time bins becomes distingushable and orthogonal. The retrieved photon pairs thus have fully controllable time bins for both photons. Compared to other degrees of freedom, the time encrypted photonic entanglement remains robust in long-distance network.
  • [1]

    Zhang S, Wu Y K, Li C, Jiang N, Pu Y F, Duan L M 2022 Phys. Rev. Lett. 128 080501

    [2]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nat. Photon. 13 210

    [3]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777

    [4]

    Bourassa J E, Alexander R N, Vasmer M, Patil A, Tzitrin I, Matsuura T, Su D, Baragiola B Q, Guha S, Dauphinais G, Sabapathy K K, Menicucci N C, Dhand I 2021 Quantum 5 392

    [5]

    Davidson O, Yogev O, Poem E, Firstenberg O 2023 Phys. Rev. Lett. 131 033601

    [6]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [7]

    Zaiser S, Rendler T, Jakobi I, Wolf T, Lee S Y, Wagner S, Bergholm V, Schulte-Herbrüggen T, Neumann P, Wrachtrup J 2016 Nat. Commun. 7 12279

    [8]

    Huang W, Liang X, Zhao J, Wu Z, Zhang K, Yuan C H, Wu Y, Fan B, Zhang W, Chen L 2024 arXiv:2410.23674

    [9]

    Yang Y 2019 Phys. Rev. Lett. 123 110501

    [10]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A 2008 Phys. Rev. Lett. 100 093602

    [11]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601

    [12]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M, Polzik E S 2010 Phys. Rev. Lett. 104 133601

    [13]

    Jia W, Xu V, Kuns K, Nakano M, Barsotti L, Evans M, Mavalvala N, members of the LIGO Scientific Collaboration 2024 Science 385 1318

    [14]

    Liu J L, Luo X Y, Yu Y, Wang C Y, Wang B, Hu Y, Li J, Zheng M Y, Yao B, Yan Z, Teng D, Jiang J W, Liu X B, Xie X P, Zhang J, Mao Q H, Jiang X, Zhang Q, Bao X H, Pan J W 2024 Nature 629 579

    [15]

    Van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Malik P, Seubert M, Bauer T, Rosenfeld W, Zhang W, Becher C, Weinfurter H 2022 Nature 607 69

    [16]

    Stolk A J, van der Enden K L, Slater M C, te Raa-Derckx I, Botma P, Van Rantwijk J, Biemond J B, Hagen R A, Herfst R W, Koek W D, Meskers A J H, Voller R, Zwet E J v, Markham M, Edmonds A M, Geus J F, Elsen F, Jungbluth B, Haefner C, Tresp C, Stuhler J S, Ritter S, Hanson R 2024 Sci. Adv. 10 eadp6442

    [17]

    Knaut C M, Suleymanzade A, Wei Y C, Assumpcao D R, Stas P J, Huan Y Q, Machielse B, Knall E N, Sutula M, Baranes G, Sinclair N, De-Eknamkul C, Levonian D S, Bhaskar M K, Park H, M L, Lukin M D 2024 Nature 629 573

    [18]

    Luo X Y, Wang C Y, Zheng M Y, Wang B, Liu J L, Gao B F, Li J, Yan Z, Ke Q M, Teng D, Wang R C, Wu J, Huang J, Li H, You L X, Xie X P, Xu F, Zhang Q, Bao X H, Pan J W 2025 arXiv:2504.05660

    [19]

    Gorshkov A V, André A, Fleischhauer M, Sørensen A S, Lukin M D 2007 Phys. Rev. Lett. 98 123601

    [20]

    Hsiao Y F, Chen H S, Tsai P J, Chen Y C 2014 Phys. Rev. A 90 055401

    [21]

    Tranter A D, Slatyer H J, Hush M R, Leung A C, Everett J L, Paul K V, Vernaz-Gris P, Lam P K, Buchler B C, Campbell G T 2018 Nat. Commun. 9 4360

    [22]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602

    [23]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nat. Photon. 13 346

    [24]

    Cao M, Hoffet F, Qiu S, Sheremet A S, Laurat J 2020 Optica 7 1440

    [25]

    Wen R, Zou C L, Zhu X, Chen P, Ou Z, Chen J, Zhang W 2019 Phys. Rev. Lett. 122 253602

    [26]

    Wang X, Wang J, Ren Z, Wen R, Zou C L, Siviloglou G A, Chen J 2022 Phys. Rev. Lett. 128 083605

    [27]

    Wang X, Wang J, Zuo Y, Dong L, Siviloglou G A, Chen J 2023 Chinese Physics B 32 074206

    [28]

    Liu Y X, Wang Z H, Guan S J, Wang Q X, Zhang P F, Li G, Zhang T C 2024 Acta Phys. Sin. 73 113701 (in Chinses) [刘岩鑫,王志辉,管世军,王勤霞,张鹏飞,李刚,张天才 2024 物理学报 73 113701]

    [29]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381

    [30]

    Dudin Y, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801

    [31]

    Wang J, Dong L, Wang X, Zhou Z, Huang J, Zuo Y, Siviloglou G A, Chen J F 2024 Phys. Rev. Research 6 L042002

    [32]

    Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501

    [33]

    Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501

    [34]

    Choi K S 2011 Coherent control of entanglement with atomic ensembles. Ph.D. Dissertation, USA, California Institute of Technology

  • [1] 刘畅, 孙铭烁, 罗一振, 董书言, 张春辉, 王琴. 基于双参数扫描的量子存储辅助测量设备无关量子密钥分发协议. 物理学报, doi: 10.7498/aps.75.20251171
    [2] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁. 物理学报, doi: 10.7498/aps.73.20241070
    [3] 梁澎军, 朱天翔, 肖懿鑫, 王奕洋, 韩永建, 周宗权, 李传锋. 浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽. 物理学报, doi: 10.7498/aps.73.20240116
    [4] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, doi: 10.7498/aps.72.20230559
    [5] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, doi: 10.7498/aps.72.20231203
    [6] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响. 物理学报, doi: 10.7498/aps.72.20230966
    [7] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, doi: 10.7498/aps.71.20212245
    [8] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述. 物理学报, doi: 10.7498/aps.71.20212197
    [9] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, doi: 10.7498/aps.71.20220083
    [10] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, doi: 10.7498/aps.71.20211803
    [11] 李宗峰, 刘端程, 周宗权, 李传锋. 基于EuCl3·6H2O晶体的光存储. 物理学报, doi: 10.7498/aps.70.20210648
    [12] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, doi: 10.7498/aps.68.20181729
    [13] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, doi: 10.7498/aps.68.20190039
    [14] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [15] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, doi: 10.7498/aps.68.20182215
    [16] 王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海. 读出效率对光与原子纠缠产生的影响. 物理学报, doi: 10.7498/aps.68.20181314
    [17] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, doi: 10.7498/aps.67.20181183
    [18] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, doi: 10.7498/aps.66.074201
    [19] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究. 物理学报, doi: 10.7498/aps.64.140304
    [20] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, doi: 10.7498/aps.63.144203
计量
  • 文章访问数:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-19

/

返回文章
返回