Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dependence of retrieval efficiency on waist ratio of read beam to anti-Stokes photon mode in cavity-enhanced quantum memory

Fan Wen-Xin Wang Min-Jie Jiao Hao-Le Lu Jia-Jin Liu Hai-Long Yang Zhi-Fang Xi Meng-Qi Li Shu-Jing Wang Hai

Citation:

Dependence of retrieval efficiency on waist ratio of read beam to anti-Stokes photon mode in cavity-enhanced quantum memory

Fan Wen-Xin, Wang Min-Jie, Jiao Hao-Le, Lu Jia-Jin, Liu Hai-Long, Yang Zhi-Fang, Xi Meng-Qi, Li Shu-Jing, Wang Hai
PDF
HTML
Get Citation
  • Quantum communication is promising for absolutely safe information transmission. However, the direct transmission distance of quantum states is limited by the no-cloning theorem and transmission loss. To solve these problems, Duan et al. proposed a promising quantum repeater scheme, DLCZ protocol (Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413), in which linear optics and atomic ensembles are used to combine entanglement generation and quantum memory into a single node. A quantum memory with highly retrieval efficiency is beneficial to increasing the rate of entanglement swapping, and also achieving high-speed entanglement distribution. Up to now, high-efficiency quantum memories have been realized by using high-optical-depth atomic ensembles or by coupling atomic ensembles with a medium-finesse optical cavity. However, the effect of the waist ratio of read beam mode and anti-Stokes photon mode on intrinsic retrieval efficiency has not been studied in detail. Here, we study the dependence of intrinsic retrieval efficiency on the waist ratio of read beam mode to anti-Stokes photon mode in cavity-enhanced quantum memory.In this work, an 87Rb atomic ensemble, that is placed at the center of a passively stabilized polarization interferometer (BD1,2), is used as quantum memory. Firstly, the ensemble is captured through magneto-optical trapping (MOT) and prepared into the Zeeman sub-level of ground state $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle $. Then, a weak write pulse with frequency red-detuned from the $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle \to \left| {5{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F' = 1,m = 1} \right\rangle $ transition by 110 MHz, illuminates the atoms and induces spontaneous Raman scattering out a Stokes photon. In this regime of weak excitation, the detection of a Stokes photon heralds the storage of a single spin wave $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle \leftrightarrow \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 2,m = 0} \right\rangle $ ($ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 1,m = 0} \right\rangle \leftrightarrow \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 2,m = 2} \right\rangle $) distributed among the whole ensemble. After a programmable delay, a read pulse that generates a 110 MHz red-detuning from the $ \left| {5{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F = 2,m = 0} \right\rangle \to \left| {5{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}},F' = 2,m = - 1} \right\rangle $ transition converts this spin wave into an anti-Stokes photon. We detect the Stokes photons and anti-Stokes photons with polarization $ {\sigma ^ + } $, which means that all the spin-waves are stored in a magnetic-field-insensitive state to reduce the decoherence caused by the stray magnetic fields. In order to increase the intrinsic retrieval efficiency, the atomic ensemble is placed in a ring cavity. The cavity length is 4 m, the finesse is measured to be ~15, and the escape efficiency of ring cavity is 52.9%. Both Stokes and anti-Stokes photon qubits are required to resonate with the ring cavity. To meet this requirement, a cavity-locking beam is injected into the cavity to stabilize the cavity length by using a Pound-Drever-Hall locking scheme. Finally, we fix the Stokes (anti-Stokes) photon mode waist and change the waist ratio through changing the write beam (read beam) waist.The experimental results show that when the waist ratio of read beam mode to anti-Stokes photon mode is 3, the intrinsic retrieval efficiency reaches to $ 68.9 {\text{%}} \pm 1.6{\text{%}} $ and normalized cross-correlation function $ {g^{(2)}} $ can achieve $ 26.5 \pm 1.9 $. We build a theoretical model, which shows that the intrinsic retrieval efficiency reaches the peak when the waist ratio is 3, and the intrinsic retrieval efficiency tends to be stable when the waist ratio continues to increase. The experimental results accord with the theoretical results. In the future, we will improve the intrinsic retrieval efficiency by enhancing the fineness of the optical cavity with optimal cavity parameters.
      Corresponding author: Li Shu-Jing, lishujing@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174235), the Fund for “1331 Project” Key Subjects Construction of Shanxi Province, China (Grant No. 1331KSC), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021221011).
    [1]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502Google Scholar

    [2]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [3]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [4]

    Pan J W, Simon C, Brukner Č, Zeilinger A 2001 Nature 410 1067Google Scholar

    [5]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [6]

    Pan J W, Gasparoni S, Ursin R, Weihs G, Zeilinger A 2003 Nature 423 417Google Scholar

    [7]

    Reichle R, Leibfried D, Knill E, et al. 2006 Nature 443 838Google Scholar

    [8]

    Matsukevich D N, Chanelière T, Bhattacharya M, et al. 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [9]

    Dudin Y O, Jenkins S D, Zhao R, et al. 2009 Phys. Rev. Lett. 103 020505Google Scholar

    [10]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [11]

    Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601Google Scholar

    [12]

    Matsukevich D N, Chanelière T, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2006 Phys. Rev. Lett. 96 030405Google Scholar

    [13]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Perseguers S, Lapeyre G J, Cavalcanti D, Lewenstein M, Acín A 2013 Rep. Prog. Phys. 76 096001Google Scholar

    [15]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [16]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [17]

    Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar

    [18]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [19]

    Laurat J, de Riedmatten H, Felinto D, Chou C W, Schomburg E W, Kimble H J 2006 Opt. Express 14 6912Google Scholar

    [20]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [21]

    Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar

    [22]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [23]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photonics 10 381Google Scholar

    [24]

    Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Bao X H, Pan J W 2021 Phys. Rev. Lett. 126 090501Google Scholar

    [25]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [26]

    Farrera P, Heinze G, Albrecht B, Ho M, Chávez M, Teo C, Sangouard N, de Riedmatten H 2016 Nat. Commun. 7 13556Google Scholar

    [27]

    Gorshkov A V, André A, Lukin M D, Sørensen A S 2007 Phys. Rev. A 76 033805Google Scholar

    [28]

    Nunn J, Walmsley A, Raymer M G, Surmacz K, Waldermann F C, Wang Z, Jaksch D 2007 Phys. Rev. A 75 011401Google Scholar

    [29]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [30]

    Surmacz K, Nunn J, Reim K, Lee K. C, Lorenz V. O, Sussman B, Walmsley I. A, Jaksch D 2008 Phys. Rev. A 78 033806Google Scholar

    [31]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar

    [32]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [33]

    Wang M J, Wang S Z, Ma T F, Li Y, Xie Y, Jiao H L, Liu H L, Li S J, Wang H 2023 Quantum 7 903Google Scholar

    [34]

    Wang S Z, Wang M J, Wen Y F, Xv Z X, Ma T F, Li S J, Wang H 2021 Commun. Phys. 4 168Google Scholar

    [35]

    Black D E 2001 Am. J. Phys. 69 79Google Scholar

    [36]

    Li C, Wang H Y, Artemiy D, Riccard M O, Miao H X, Han S 2021 Results Phys. 30 104835Google Scholar

    [37]

    Su J, Jiao M X, Jiang F 2018 Optik 168 348Google Scholar

    [38]

    Stoyanov L, Stefanov A, Dreischuh A, Paulus G G 2023 Opt. express 31 13683Google Scholar

    [39]

    Hiekkamäki M, Barros R F, Ornigotti M, Fickler R 2022 Nat. Photonics 16 828Google Scholar

    [40]

    Iulia G 2023 Nat. Rev. Phys. 5 372Google Scholar

    [41]

    Erpenbeck A, Gull E, Cohen G 2023 Phys. Rev. Lett. 130 186301Google Scholar

    [42]

    Dum R, Zoller P, Ritsch H 1992 Phys. Rev. A 45 4879Google Scholar

  • 图 1  实验能级图 (a)写过程; (b)读过程

    Figure 1.  Relevant 87Rb atomic levels: (a) Writing process; (b) reading process.

    图 2  实验装置图, 其中BD为光移束器, PZT为压电陶瓷, OSFS为光谱滤波器组, SMF为单模光纤, PD为光电探测器, SPD为单光子探测器, OC为输出耦合镜

    Figure 2.  Experimental setup. BD, the beam displacer; PZT, the piezoelectric transducer; OSFS, optical-spectrum-filter set; SMF, single-mode fiber; PD, photodiode; SPD, singlephoton detector; OC, output coupler.

    图 3  实验时序图. 自上而下依次为磁光阱、锁腔过程、态制备过程、写过程、读过程

    Figure 3.  Time sequence of experiment. From top to bottom, they are magneto-optical trap, the locking cavity process, the state cleaning process, the writing process, the reading procress.

    图 4  读光饱和功率密度下, 本质恢复效率随腰斑比的变化. 橙色菱形为理论值, 蓝色方块为实验数据

    Figure 4.  Intrinsic retrieval efficiency as a function of the waist width ratio under the saturation power density of read. The orange diamond represents the theoretical value and the blue square represents the experimental data.

    图 5  腰斑比$ \alpha = 3 $时, 本质恢复效率(蓝色方块)与互关联函数$ {g^{(2)}} $(红色圆点)随读激光功率的变化

    Figure 5.  Intrinsic retrieval efficiency (the blue square) and the cross-correlation function $ {g^{(2)}} $ (the red dot) as a function of read power at the waist width ratio $ \alpha = 3 $.

  • [1]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502Google Scholar

    [2]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [3]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [4]

    Pan J W, Simon C, Brukner Č, Zeilinger A 2001 Nature 410 1067Google Scholar

    [5]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [6]

    Pan J W, Gasparoni S, Ursin R, Weihs G, Zeilinger A 2003 Nature 423 417Google Scholar

    [7]

    Reichle R, Leibfried D, Knill E, et al. 2006 Nature 443 838Google Scholar

    [8]

    Matsukevich D N, Chanelière T, Bhattacharya M, et al. 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [9]

    Dudin Y O, Jenkins S D, Zhao R, et al. 2009 Phys. Rev. Lett. 103 020505Google Scholar

    [10]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [11]

    Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601Google Scholar

    [12]

    Matsukevich D N, Chanelière T, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2006 Phys. Rev. Lett. 96 030405Google Scholar

    [13]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Perseguers S, Lapeyre G J, Cavalcanti D, Lewenstein M, Acín A 2013 Rep. Prog. Phys. 76 096001Google Scholar

    [15]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [16]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [17]

    Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar

    [18]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [19]

    Laurat J, de Riedmatten H, Felinto D, Chou C W, Schomburg E W, Kimble H J 2006 Opt. Express 14 6912Google Scholar

    [20]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [21]

    Ma L X, Lei X, Yan J L, Li R Y, Chai T, Yan Z H, Jia X J, Xie C D, Peng K C 2022 Nat. Commun. 13 2368Google Scholar

    [22]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [23]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photonics 10 381Google Scholar

    [24]

    Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Bao X H, Pan J W 2021 Phys. Rev. Lett. 126 090501Google Scholar

    [25]

    Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [26]

    Farrera P, Heinze G, Albrecht B, Ho M, Chávez M, Teo C, Sangouard N, de Riedmatten H 2016 Nat. Commun. 7 13556Google Scholar

    [27]

    Gorshkov A V, André A, Lukin M D, Sørensen A S 2007 Phys. Rev. A 76 033805Google Scholar

    [28]

    Nunn J, Walmsley A, Raymer M G, Surmacz K, Waldermann F C, Wang Z, Jaksch D 2007 Phys. Rev. A 75 011401Google Scholar

    [29]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [30]

    Surmacz K, Nunn J, Reim K, Lee K. C, Lorenz V. O, Sussman B, Walmsley I. A, Jaksch D 2008 Phys. Rev. A 78 033806Google Scholar

    [31]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar

    [32]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [33]

    Wang M J, Wang S Z, Ma T F, Li Y, Xie Y, Jiao H L, Liu H L, Li S J, Wang H 2023 Quantum 7 903Google Scholar

    [34]

    Wang S Z, Wang M J, Wen Y F, Xv Z X, Ma T F, Li S J, Wang H 2021 Commun. Phys. 4 168Google Scholar

    [35]

    Black D E 2001 Am. J. Phys. 69 79Google Scholar

    [36]

    Li C, Wang H Y, Artemiy D, Riccard M O, Miao H X, Han S 2021 Results Phys. 30 104835Google Scholar

    [37]

    Su J, Jiao M X, Jiang F 2018 Optik 168 348Google Scholar

    [38]

    Stoyanov L, Stefanov A, Dreischuh A, Paulus G G 2023 Opt. express 31 13683Google Scholar

    [39]

    Hiekkamäki M, Barros R F, Ornigotti M, Fickler R 2022 Nat. Photonics 16 828Google Scholar

    [40]

    Iulia G 2023 Nat. Rev. Phys. 5 372Google Scholar

    [41]

    Erpenbeck A, Gull E, Cohen G 2023 Phys. Rev. Lett. 130 186301Google Scholar

    [42]

    Dum R, Zoller P, Ritsch H 1992 Phys. Rev. A 45 4879Google Scholar

  • [1] Wang Shuai, Li Xi, Yao Xing-Can. Ultracold atomic imaging based on enhanced fringe removal method. Acta Physica Sinica, 2024, 73(14): 146701. doi: 10.7498/aps.73.20240570
    [2] Yu Ze-Xin, Liu Qi-Xin, Sun Jian-Fang, Xu Zhen. Enhanced production of 199Hg cold atoms based on two-dimensional magneto-optical trap. Acta Physica Sinica, 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [3] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [4] Wen Ya-Fei, Tian Jian-Feng, Wang Zhi-Qiang, Zhuang Yuan-Yuan. Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble. Acta Physica Sinica, 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [5] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [6] Ma Teng-Fei, Wang Min-Jie, Wang Sheng-Zhi, Jiao Hao-Le, Xie Yan, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai. Experimental study of retrieval efficiency of Duan-Lukin-Cirac-Zoller quantum memory by optical cavity-enhanced. Acta Physica Sinica, 2022, 71(2): 020301. doi: 10.7498/aps.71.20210881
    [7] Yuan Liang, Wen Ya-Fei, Li Ya, Liu Chao, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai. Optical cavity enhancement experiment of Duan-Lukin-Cirac-Zoller writing excitation process in atomic ensemble. Acta Physica Sinica, 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [8] Experimental Study on Retrieval efficiency of Duan-Lukin-Cirac-Zoller Quantum Memory by Optical Cavity-Enhanced. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210881
    [9] Lu Bo, Han Cheng-Yin, Zhuang Min, Ke Yong-Guan, Huang Jia-Hao, Lee Chao-Hong. Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble. Acta Physica Sinica, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [10] Wang Sheng-Zhi, Wen Ya-Fei, Zhang Chang-Rui, Wang Deng-Xin, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Dependence of performance character of photon-atom entanglement source on retrieval efficiency. Acta Physica Sinica, 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [11] An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei. Coherent manipulation of single collective excitations in a cold atomic ensemble. Acta Physica Sinica, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [12] Wen Ya-Fei, Wang Sheng-Zhi, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble. Acta Physica Sinica, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [13] Zhao Xiu-Niao, Sun Jian-An, Dou Fu-Quan. Effect of external field shape on the ultracold atom-polymer molecule conversion efficiency. Acta Physica Sinica, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [14] Cong Zhong-Chao, Yu Xue-Feng, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Sun Jing, Wang Bo, Ma Wu-Ying, Ma Li-Ya, Zhou Hang. Online and offline test method of total dose radiation damage on static random access memory. Acta Physica Sinica, 2014, 63(8): 086101. doi: 10.7498/aps.63.086101
    [15] Liu Rui, Yu Ya-Fei, Zhang Zhi-Ming. Generation of narrowband triphoton frequency-entangled states via cold-atom ensembles. Acta Physica Sinica, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [16] Zheng Qi-Wen, Yu Xue-Feng, Cui Jiang-Wei, Guo Qi, Ren Di-Yuan, Cong Zhong-Chao. Research on SRAM functional failure mode induced by total ionizing dose irradiation. Acta Physica Sinica, 2013, 62(11): 116101. doi: 10.7498/aps.62.116101
    [17] Guo Xiang-Yang, Du Xiao-Qing, Chang Ben-Kang, Qiao Jian-Liang, Qian Yun-Sheng, Wang Xiao-Hui. Quantum efficiency recovery of reflection-mode NEA GaN photocathode. Acta Physica Sinica, 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [18] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [19] Huang Shan-Guo, Gu Wan-Yi, Ma Hai-Qiang. Effects of detuning on the storage of a light pulse in an ultracold atomic medium. Acta Physica Sinica, 2004, 53(12): 4211-4217. doi: 10.7498/aps.53.4211
    [20] LIANG WEN-QING, CHU KAI-QIN, ZHANG ZHI-MING, XIE SHENG-WU. MICROMASER INJECTED WITH ULTRA-COLD V-TYPE THREE-LEVEL ATOMS:EFFECTS OF ATOMIC COHERENCE ON PHOTON STATISTICS. Acta Physica Sinica, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
Metrics
  • Abstract views:  2176
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2023
  • Accepted Date:  07 August 2023
  • Available Online:  24 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回