Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble

Lu Bo Han Cheng-Yin Zhuang Min Ke Yong-Guan Huang Jia-Hao Lee Chao-Hong

Citation:

Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble

Lu Bo, Han Cheng-Yin, Zhuang Min, Ke Yong-Guan, Huang Jia-Hao, Lee Chao-Hong
PDF
HTML
Get Citation
  • Quantum metrology is the interdisciplinary of investigating how to utilize the principles of quantum mechanics to perform parameter estimation and improve the measurement precision by quantum effects. With the experimental developments of ultracold atoms, ultracold atomic ensemble provides an excellent platform for implementing quantum metrology. Attributed to well-developed techniques of quantum control, one can prepare several exotic non-Gaussian multi-particle entangled states in the ensembles of ultracold atoms. Based on many-body quanum interferometry, and using these non-Gaussian entangled states as probe, the high-precision measurement beyond the standard quantum limit can be realized. This article introduces the background and advancement of this field.
      Corresponding author: Lee Chao-Hong, lichaoh2@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874434, 11574405, 11704420).
    [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [3]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330Google Scholar

    [4]

    Pezzè L, Smerzi A, Oberthaler M, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [5]

    Zhou L, Long S, Tang B, Chen X, Gao F, Peng W, Duan W, Zhong J, Xiong Z, Wang J, Zhang Y, Zhan M 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Williams J, Chiow S, Yu N, Müller H 2016 New J. Phys. 18 025018Google Scholar

    [7]

    Dickerson S, Hogan J, Sugarbaker A, Johnson D, Kasevich M 2013 Phys. Rev. Lett. 111 083001Google Scholar

    [8]

    Graham P, Hogan J, Kasevich M, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [9]

    Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, Zoest T, Ertmer W, Schleich W, Rasel E 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [10]

    Dolde F, Fedder H, Doherty M, Nöbauer T, Rempp F, Balsubramanian G, Wolf T, Reinhard F, Hollenberg L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [11]

    Cooper J, Hallwood D, Dunningham J 2010 Phys. Rev. A 81 043624Google Scholar

    [12]

    Boto A, Kok P, Abrams D, Braunstein S, Williams C, Dowling J 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [13]

    Ockeloen C, Schmied R, Riedel M, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [14]

    Georgescu I 2014 Nat. Phys. 10 474Google Scholar

    [15]

    Wasilewski W, Jensen K, Krauter H, Renema J, Balabas M, Polzik E 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [16]

    Ke Y, Huang J, Zhuang M, Lu B, Lee C 2018 Phys. Rev. A 98 053826Google Scholar

    [17]

    Riedel M, Böhi P, Li Y, Hänsch T, Sinatra A, Treutlein P 2010 Nature 461 1170

    [18]

    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler M 2010 Nature 464 1165Google Scholar

    [19]

    Wineland D 2013 Rev. Mod. Phys. 85 1103Google Scholar

    [20]

    Blatt R, Wineland D 2008 Nature 453 1008Google Scholar

    [21]

    Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Britton J, Itano W, Jelenković B, Langer C, Rosenband T, Wineland D 2002 Phys. Rev. Lett. 89 247901Google Scholar

    [22]

    Huver S, Wildfeuer C, Dowling J 2008 Phys. Rev. A 78 063828Google Scholar

    [23]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879Google Scholar

    [24]

    Fang K, Acosta V, Santori C, Huang Z, Itoh K, Watanabe H, Shikata S, Beausoleil R 2013 Phys. Rev. Lett. 110 130802Google Scholar

    [25]

    Simmons S, Jones J, Karlen S, Ardavan A, Morton J 2010 Phys. Rev. A 82 022330Google Scholar

    [26]

    Nie X, Huang J, Li Z, Zheng W, Lee C, Peng X, Du J 2018 Sci. Bull. 63 469Google Scholar

    [27]

    Nie X, Li J, Cui J, Luo Z, Huang J, Chen H, Lee C, Peng X, Du J 2015 New J. Phys. 17 053028Google Scholar

    [28]

    Pham L, Bar-Gill N, Belthangady C, Le Sage D, Cappellaro P, Lukin M, Yacoby A, Walsworth R 2012 Phys. Rev. B 86 045214Google Scholar

    [29]

    Demkowicz-Dobrzański R, Kołodyński J, Guţă M 2012 Nat. Commun. 3 1063Google Scholar

    [30]

    Escher B, de Matos Filho R, Davidovich L 2011 Nat. Phys. 7 406Google Scholar

    [31]

    Braunstein S 1992 Phys. Rev. Lett. 69 3598Google Scholar

    [32]

    Braunstein S, Caves C 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [33]

    Huang J, Wu S, Zhong H, Lee C 2014 Annual Review of Cold Atoms and Molecules (Vol. 2) (World Scientific) p365

    [34]

    Lücke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C 2011 Science 334 773Google Scholar

    [35]

    Luo X, Zou Y, Wu L, Liu Q, Han M, Tey M, You L 2017 Science 355 620Google Scholar

    [36]

    Zou Y, Wu L, Liu Q, Luo X, Guo S, Cao J, Tey M, You L 2018 PNAS 115 6381Google Scholar

    [37]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D, Pezzè L, Smerzi A, Oberthaler M 2014 Science 345 424Google Scholar

    [38]

    Wang X, Sanders B 2001 Phys. Rev. A 65 012303Google Scholar

    [39]

    Ma J, Wang X, Sun C, Nori F 2011 Phys. Rep. 509 89Google Scholar

    [40]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138Google Scholar

    [41]

    Lee C, Huang J, Deng H, Dai H, Xu J 2012 Front. Phys. 7 109Google Scholar

    [42]

    Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M 2008 Nature 455 1216Google Scholar

    [43]

    Berrada T, Frank S, Bücker R, Schumm T, Schaff J, Schmiedmayer J 2013 Nat. Commun. 4 2077Google Scholar

    [44]

    Davis E, Bentsen G, Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601Google Scholar

    [45]

    Fröwis F, Sekatski P, Dür W 2016 Phys. Rev. Lett. 116 090801Google Scholar

    [46]

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R, Kheruntsyan K, Oberthaler M 2016 Phys. Rev. Lett. 117 013001Google Scholar

    [47]

    Hosten O, Krishnakumar R, Engelsen N, Kasevich M 2016 Science 352 1552Google Scholar

    [48]

    Lee C 2006 Phys. Rev. Lett. 97 150402Google Scholar

    [49]

    Lee C 2009 Phys. Rev. Lett. 102 070401Google Scholar

    [50]

    Hu Y, Feng M, Lee C 2012 Phys. Rev. A 85 043604Google Scholar

    [51]

    Luo C, Huang J, Zhang X, Lee C 2017 Phys. Rev. A 95 023608Google Scholar

    [52]

    Zhuang M, Huang J, Lee C 2018 Phys. Rev. A 98 033603Google Scholar

    [53]

    Ma J, Huang Y, Wang X, Sun C 2011 Phys. Rev. A 84 039907Google Scholar

    [54]

    You L 2003 Phys. Rev. Lett. 90 030402Google Scholar

    [55]

    Huang J, Qin X, Zhong H, Ke Y, Lee C 2015 Sci. Rep. 5 17894

    [56]

    Huang J, Zhuang M, Lu B, Ke Y, Lee C 2018 Phys. Rev. A 98 012129Google Scholar

    [57]

    Lau H, Dutton Z, Wang T, Simon C 2014 Phys. Rev. Lett. 113 090401Google Scholar

    [58]

    Dooley S, Spiller T P 2014 Phys. Rev. A 90 012320Google Scholar

    [59]

    Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W, Saito S 2015 Phys. Rev. Lett. 115 170801Google Scholar

    [60]

    Molmer K, Sorensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [61]

    Bhaktavatsala Rao D, Bar-Gill N, Kurizki G 2011 Phys. Rev. Lett. 106 010404Google Scholar

    [62]

    Gerry C, Grobe R 1997 Phys. Rev. A 56 2390Google Scholar

    [63]

    Gerry C, Grobe R 1998 Phys. Rev. A 57 2247Google Scholar

    [64]

    Recamier J, Castanos O, Jauregui R, Frank A 2000 Phys. Rev. A 61 063808Google Scholar

    [65]

    Inoue R, Tanaka S, Namiki R, Sagawa T, Takahashi Y 2013 Phys. Rev. Lett. 110 163602Google Scholar

    [66]

    Opatrny T, Molmer K 2012 Phys. Rev. A 86 023845Google Scholar

    [67]

    Kok P, Lee H, Dowling J 2002 Phys. Rev. A 65 052104Google Scholar

    [68]

    Nielsen A, Molmer K 2007 Phys. Rev. A 75 063803Google Scholar

    [69]

    Chen Y, Bao X, Yuan Z, Chen S, Zhao B, Pan J 2010 Phys. Rev. Lett. 104 043601Google Scholar

    [70]

    Lombardo D, Twamley J 2015 Sci. Rep. 5 13884Google Scholar

    [71]

    Signoles A, Facon A, Grosso D, Dotsenko I, Haroche S, Raimond J, Brune M, Gleyzes S 2014 Nat. Phys. 10 715Google Scholar

    [72]

    Huang J, Zhuang M, Lee C 2018 Phys. Rev. A 97 032116Google Scholar

    [73]

    Lee C, Fu L, Kivshar Y 2008 EPL 81 60006Google Scholar

    [74]

    Xing H, Wang A, Tan Q, Zhang W, Yi S 2016 Phys. Rev. A 93 043615Google Scholar

    [75]

    Yukawa E, Milburn G, Nemoto K 2018 Phys. Rev. A 97 013820Google Scholar

    [76]

    Hatomura T 2018 New J. Phys. 20 015010Google Scholar

    [77]

    Dunningham J, Burnett K 2004 Phys. Rev. A 70 033601Google Scholar

    [78]

    Campos R, Gerry C, Benmoussa A 2003 Phys. Rev. A 68 023810Google Scholar

    [79]

    Savas D, Peter W G, Jason M H, Mark A K 2008 Phys. Rev. D 78 122002Google Scholar

    [80]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [81]

    Helm J, Billam T, Rakonjac A, Cornish S, Gardiner S 2018 Phys. Rev. Lett. 120 063201Google Scholar

    [82]

    Nolan S, Sabbatini J, Bromley M, Davis M, Haine S 2016 Phys. Rev. A 93 023616Google Scholar

    [83]

    Kessler E, Kómár P, Bishof M, Jiang L, Sørensen A, Ye J, Lukin M 2014 Phys. Rev. Lett. 112 190403Google Scholar

    [84]

    Dorner U 2012 New J. Phys. 14 043011Google Scholar

    [85]

    Weinstein J, Beloy K, Derevianko A 2010 Phys. Rev. A 81 030302(R)Google Scholar

  • 图 1  自旋相干态(左)与自旋压缩态(右)在广义Bloch球上的Husimi分布(摘自文献[39])

    Figure 1.  The Husimi distribution of spin coherent state (left) and spin squeezed state (right) on the generalized Bloch sphere. Adapted from Ref. [39].

    图 2  上图为不同自旋猫态在广义Bloch球上的Husimi分布; 下图为不同自旋猫态在有原子数损失($\eta $为原子的损失率)情况下的相位测量精度极限(摘自文献[55])

    Figure 2.  Top: The Husimi distribution of different spin cat states on the generalized Bloch sphere. Bottom: The ultimate phase measurement precision with different spin cat states under atomic loss ($\eta $ denotes the ratio of atom loss). Adapted from Ref. [55].

    图 3  基于量子相变和多体量子干涉的相位测量方案示意图( 摘自文献[61])

    Figure 3.  Schematic of precision phase measurement based on driving through quantum phase transitions and many-body quantum interferometry. Adapted from Ref. [61].

    图 4  (a)旋量BEC的基态由单原子内态的二阶塞曼效应和BEC中自旋交换作用强度的大小决定, 会出现两个相变点, 将相图分为三个区域, 分别为P, BA和TF相; (b)线性扫描q时, 通过吸收成像观察到的BEC在各个内态上的分布随时间的变化(摘自文献[35])

    Figure 4.  (a) The thick black solid line denotes the gap $\Delta $ between the first excited and the ground state of Hamiltonian, which together with the two minima at q = ±2|c2| defines three quantum phases, illustrated by their atom distributions in the three spin components, the first-order Zeeman shifts are not shown because they are inconsequential for a system with zero magnetization; (b) absorption images of atoms in the three spin components after Stern-Gerlach separation, showing efficient conversion of a condensate from a polar state into a TFS by sweeping q linearly from 3|c2| to –3|c2| in 3 s. Adapted from Ref. [35].

  • [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [3]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330Google Scholar

    [4]

    Pezzè L, Smerzi A, Oberthaler M, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [5]

    Zhou L, Long S, Tang B, Chen X, Gao F, Peng W, Duan W, Zhong J, Xiong Z, Wang J, Zhang Y, Zhan M 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Williams J, Chiow S, Yu N, Müller H 2016 New J. Phys. 18 025018Google Scholar

    [7]

    Dickerson S, Hogan J, Sugarbaker A, Johnson D, Kasevich M 2013 Phys. Rev. Lett. 111 083001Google Scholar

    [8]

    Graham P, Hogan J, Kasevich M, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [9]

    Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, Zoest T, Ertmer W, Schleich W, Rasel E 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [10]

    Dolde F, Fedder H, Doherty M, Nöbauer T, Rempp F, Balsubramanian G, Wolf T, Reinhard F, Hollenberg L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [11]

    Cooper J, Hallwood D, Dunningham J 2010 Phys. Rev. A 81 043624Google Scholar

    [12]

    Boto A, Kok P, Abrams D, Braunstein S, Williams C, Dowling J 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [13]

    Ockeloen C, Schmied R, Riedel M, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [14]

    Georgescu I 2014 Nat. Phys. 10 474Google Scholar

    [15]

    Wasilewski W, Jensen K, Krauter H, Renema J, Balabas M, Polzik E 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [16]

    Ke Y, Huang J, Zhuang M, Lu B, Lee C 2018 Phys. Rev. A 98 053826Google Scholar

    [17]

    Riedel M, Böhi P, Li Y, Hänsch T, Sinatra A, Treutlein P 2010 Nature 461 1170

    [18]

    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler M 2010 Nature 464 1165Google Scholar

    [19]

    Wineland D 2013 Rev. Mod. Phys. 85 1103Google Scholar

    [20]

    Blatt R, Wineland D 2008 Nature 453 1008Google Scholar

    [21]

    Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Britton J, Itano W, Jelenković B, Langer C, Rosenband T, Wineland D 2002 Phys. Rev. Lett. 89 247901Google Scholar

    [22]

    Huver S, Wildfeuer C, Dowling J 2008 Phys. Rev. A 78 063828Google Scholar

    [23]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879Google Scholar

    [24]

    Fang K, Acosta V, Santori C, Huang Z, Itoh K, Watanabe H, Shikata S, Beausoleil R 2013 Phys. Rev. Lett. 110 130802Google Scholar

    [25]

    Simmons S, Jones J, Karlen S, Ardavan A, Morton J 2010 Phys. Rev. A 82 022330Google Scholar

    [26]

    Nie X, Huang J, Li Z, Zheng W, Lee C, Peng X, Du J 2018 Sci. Bull. 63 469Google Scholar

    [27]

    Nie X, Li J, Cui J, Luo Z, Huang J, Chen H, Lee C, Peng X, Du J 2015 New J. Phys. 17 053028Google Scholar

    [28]

    Pham L, Bar-Gill N, Belthangady C, Le Sage D, Cappellaro P, Lukin M, Yacoby A, Walsworth R 2012 Phys. Rev. B 86 045214Google Scholar

    [29]

    Demkowicz-Dobrzański R, Kołodyński J, Guţă M 2012 Nat. Commun. 3 1063Google Scholar

    [30]

    Escher B, de Matos Filho R, Davidovich L 2011 Nat. Phys. 7 406Google Scholar

    [31]

    Braunstein S 1992 Phys. Rev. Lett. 69 3598Google Scholar

    [32]

    Braunstein S, Caves C 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [33]

    Huang J, Wu S, Zhong H, Lee C 2014 Annual Review of Cold Atoms and Molecules (Vol. 2) (World Scientific) p365

    [34]

    Lücke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C 2011 Science 334 773Google Scholar

    [35]

    Luo X, Zou Y, Wu L, Liu Q, Han M, Tey M, You L 2017 Science 355 620Google Scholar

    [36]

    Zou Y, Wu L, Liu Q, Luo X, Guo S, Cao J, Tey M, You L 2018 PNAS 115 6381Google Scholar

    [37]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D, Pezzè L, Smerzi A, Oberthaler M 2014 Science 345 424Google Scholar

    [38]

    Wang X, Sanders B 2001 Phys. Rev. A 65 012303Google Scholar

    [39]

    Ma J, Wang X, Sun C, Nori F 2011 Phys. Rep. 509 89Google Scholar

    [40]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138Google Scholar

    [41]

    Lee C, Huang J, Deng H, Dai H, Xu J 2012 Front. Phys. 7 109Google Scholar

    [42]

    Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M 2008 Nature 455 1216Google Scholar

    [43]

    Berrada T, Frank S, Bücker R, Schumm T, Schaff J, Schmiedmayer J 2013 Nat. Commun. 4 2077Google Scholar

    [44]

    Davis E, Bentsen G, Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601Google Scholar

    [45]

    Fröwis F, Sekatski P, Dür W 2016 Phys. Rev. Lett. 116 090801Google Scholar

    [46]

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R, Kheruntsyan K, Oberthaler M 2016 Phys. Rev. Lett. 117 013001Google Scholar

    [47]

    Hosten O, Krishnakumar R, Engelsen N, Kasevich M 2016 Science 352 1552Google Scholar

    [48]

    Lee C 2006 Phys. Rev. Lett. 97 150402Google Scholar

    [49]

    Lee C 2009 Phys. Rev. Lett. 102 070401Google Scholar

    [50]

    Hu Y, Feng M, Lee C 2012 Phys. Rev. A 85 043604Google Scholar

    [51]

    Luo C, Huang J, Zhang X, Lee C 2017 Phys. Rev. A 95 023608Google Scholar

    [52]

    Zhuang M, Huang J, Lee C 2018 Phys. Rev. A 98 033603Google Scholar

    [53]

    Ma J, Huang Y, Wang X, Sun C 2011 Phys. Rev. A 84 039907Google Scholar

    [54]

    You L 2003 Phys. Rev. Lett. 90 030402Google Scholar

    [55]

    Huang J, Qin X, Zhong H, Ke Y, Lee C 2015 Sci. Rep. 5 17894

    [56]

    Huang J, Zhuang M, Lu B, Ke Y, Lee C 2018 Phys. Rev. A 98 012129Google Scholar

    [57]

    Lau H, Dutton Z, Wang T, Simon C 2014 Phys. Rev. Lett. 113 090401Google Scholar

    [58]

    Dooley S, Spiller T P 2014 Phys. Rev. A 90 012320Google Scholar

    [59]

    Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W, Saito S 2015 Phys. Rev. Lett. 115 170801Google Scholar

    [60]

    Molmer K, Sorensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [61]

    Bhaktavatsala Rao D, Bar-Gill N, Kurizki G 2011 Phys. Rev. Lett. 106 010404Google Scholar

    [62]

    Gerry C, Grobe R 1997 Phys. Rev. A 56 2390Google Scholar

    [63]

    Gerry C, Grobe R 1998 Phys. Rev. A 57 2247Google Scholar

    [64]

    Recamier J, Castanos O, Jauregui R, Frank A 2000 Phys. Rev. A 61 063808Google Scholar

    [65]

    Inoue R, Tanaka S, Namiki R, Sagawa T, Takahashi Y 2013 Phys. Rev. Lett. 110 163602Google Scholar

    [66]

    Opatrny T, Molmer K 2012 Phys. Rev. A 86 023845Google Scholar

    [67]

    Kok P, Lee H, Dowling J 2002 Phys. Rev. A 65 052104Google Scholar

    [68]

    Nielsen A, Molmer K 2007 Phys. Rev. A 75 063803Google Scholar

    [69]

    Chen Y, Bao X, Yuan Z, Chen S, Zhao B, Pan J 2010 Phys. Rev. Lett. 104 043601Google Scholar

    [70]

    Lombardo D, Twamley J 2015 Sci. Rep. 5 13884Google Scholar

    [71]

    Signoles A, Facon A, Grosso D, Dotsenko I, Haroche S, Raimond J, Brune M, Gleyzes S 2014 Nat. Phys. 10 715Google Scholar

    [72]

    Huang J, Zhuang M, Lee C 2018 Phys. Rev. A 97 032116Google Scholar

    [73]

    Lee C, Fu L, Kivshar Y 2008 EPL 81 60006Google Scholar

    [74]

    Xing H, Wang A, Tan Q, Zhang W, Yi S 2016 Phys. Rev. A 93 043615Google Scholar

    [75]

    Yukawa E, Milburn G, Nemoto K 2018 Phys. Rev. A 97 013820Google Scholar

    [76]

    Hatomura T 2018 New J. Phys. 20 015010Google Scholar

    [77]

    Dunningham J, Burnett K 2004 Phys. Rev. A 70 033601Google Scholar

    [78]

    Campos R, Gerry C, Benmoussa A 2003 Phys. Rev. A 68 023810Google Scholar

    [79]

    Savas D, Peter W G, Jason M H, Mark A K 2008 Phys. Rev. D 78 122002Google Scholar

    [80]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [81]

    Helm J, Billam T, Rakonjac A, Cornish S, Gardiner S 2018 Phys. Rev. Lett. 120 063201Google Scholar

    [82]

    Nolan S, Sabbatini J, Bromley M, Davis M, Haine S 2016 Phys. Rev. A 93 023616Google Scholar

    [83]

    Kessler E, Kómár P, Bishof M, Jiang L, Sørensen A, Ye J, Lukin M 2014 Phys. Rev. Lett. 112 190403Google Scholar

    [84]

    Dorner U 2012 New J. Phys. 14 043011Google Scholar

    [85]

    Weinstein J, Beloy K, Derevianko A 2010 Phys. Rev. A 81 030302(R)Google Scholar

  • [1] HE Yuanyao, YANG Bing. Recent research progress of ultracold-atom quantum simulation of Fermi-Hubbard model. Acta Physica Sinica, 2025, 74(1): 017101. doi: 10.7498/aps.74.20241595
    [2] Wang En-Long, Wang Guo-Chao, Zhu Ling-Xiao, Bian Jin-Tian, Mo Xiao-Juan, Kong Hui. Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer. Acta Physica Sinica, 2025, 74(3): 033701. doi: 10.7498/aps.74.20241348
    [3] Zhao Xiu-Qin, Zhang Wen-Hui. Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity. Acta Physica Sinica, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [4] Pan Jian-Wei. Quantum information technology: Current status and prospects. Acta Physica Sinica, 2024, 73(1): 010301. doi: 10.7498/aps.73.20231795
    [5] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [6] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [7] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [8] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [9] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [10] Phase Transition Observation of Nanoscale Water on Diamond Surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211348
    [11] Wang Shuai, Sui Yong-Xing, Meng Xiang-Guo. Application of photon-added two-mode squeezed vacuum states to phase estimation based on Mach-Zehnder interferometer. Acta Physica Sinica, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [12] An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei. Coherent manipulation of single collective excitations in a cold atomic ensemble. Acta Physica Sinica, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [13] Wang Lan-Ruo, Zhong Yuan, Li Jin-Jin, Qu Ji-Feng, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Zhou Zhi-Qiang, Fu Kai, Shi Yong. Development of quantum voltage noise source chip for precision measurement of Boltzmann constant. Acta Physica Sinica, 2018, 67(10): 108501. doi: 10.7498/aps.67.20172643
    [14] Cheng Jian,  Feng Jin-Xia,  Li Yuan-Ji,  Zhang Kuan-Shou. Measurement of low-frequency signal based on quantum-enhanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [15] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [16] Liu Rui, Yu Ya-Fei, Zhang Zhi-Ming. Generation of narrowband triphoton frequency-entangled states via cold-atom ensembles. Acta Physica Sinica, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [17] Sun Xin-Mei, Zha Xin-Wei, Qi Jian-Xia, Lan Qian. High-efficient quantum state sharing via non-maximally five-qubit cluster state. Acta Physica Sinica, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [18] Ma Jie, Chen Peng, Liu Wen-Liang, Feng Guo-Sheng, Li Yu-Qing, Wu Ji-Zhou, Xiao Lian-Tuan, Jia Suo-Tang. Precise measurements of rotational constants of the pure long range state of ultracold cesium molecules. Acta Physica Sinica, 2013, 62(22): 223301. doi: 10.7498/aps.62.223301
    [19] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [20] Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
Metrics
  • Abstract views:  12220
  • PDF Downloads:  320
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2019
  • Accepted Date:  20 February 2019
  • Available Online:  19 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回