Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum information technology: Current status and prospects

Pan Jian-Wei

Citation:

Quantum information technology: Current status and prospects

Pan Jian-Wei
PDF
HTML
Get Citation
  • In the early decades of the 20th century, the inception of quantum mechanics catalyzed the first quantum revolution, resulting in groundbreaking technological advances, such as nuclear energy, semiconductors, lasers, nuclear magnetic resonance, superconductivity, and global satellite positioning systems. These innovations have promoted significant progress in material civilization, fundamentally changed the way of life and societal landscape of humanity. Since the 1990s, quantum control technology has made significant strides forward, ushering in a rapid evolution of quantum technologies, notably exemplified by quantum information science. This encompasses domains such as quantum communication, quantum computing, and quantum precision measurement, offering paradigm-shifting solutions for enhancing information transmission security, accelerating computational speed, and elevating measurement precision. These advances hold the potential to provide crucial underpinning for national security and the high-quality development of the national economy. The swift progression of quantum information technology heralds the advent of the second quantum revolution. Following nearly three decades of concerted efforts, China’s quantum information technology field as a whole has achieved a leap. Specifically, China presently assumes a prominent international role in both the research and practical application of quantum communication, leading the global domain in quantum computing, and achieving international preeminence or advanced standing across various facets of quantum precision measurement. Presently, it is imperative to conduct a comprehensive assessment of the developmental priorities in the realm of quantum information in China for the forthcoming 5 to 10 years, in alignment with national strategic priorities and the evolving landscape of international competition. This will enable the proactive establishment of next-generation information technology systems that are secure, efficient, autonomous, and controllable.
      Corresponding author: Pan Jian-Wei, pan@ustc.edu.cn
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 4, 1984 pp175–179

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [4]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [5]

    Gisin N 2015 Front. Phys. 10 100307Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [8]

    D Bouwmeester, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [9]

    Boschi D, Branca S, De Martini F, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [10]

    Zukowski M, Zeilinger A, Horne M A, Ekert A K 1993 Phys Rev. Lett. 71 4287Google Scholar

    [11]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [12]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [13]

    Benioff P 1980 J. Stat. Phys. 22 563Google Scholar

    [14]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [15]

    Preskill J 2018 Quantum 2 79Google Scholar

    [16]

    Shor P W 1999 Siam Rev. 41 303Google Scholar

    [17]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140Google Scholar

    [18]

    Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43Google Scholar

    [19]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar

    [20]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [21]

    Xu P, Ma Y Q, Ren J G, et al. 2019 Science 366 132Google Scholar

    [22]

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar

    [23]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [24]

    Madsen L S, Laudenbach F, Askarani M F, et al. 2022 Nature 606 75Google Scholar

    [25]

    Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [26]

    Deng Y H, Gu Y C, Liu H L, et al. 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [27]

    Deng Y H, Gong S Q, Gu Y C, et al. 2023 Phys. Rev. Lett. 130 190601Google Scholar

    [28]

    Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar

    [29]

    Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [30]

    Pan F, Chen K, Zhang P 2022 Phys. Rev. Lett. 129 090502Google Scholar

    [31]

    Zhang X, Jiang W J, Deng J F, et al. 2022 Nature 607 468Google Scholar

    [32]

    Cao S R, Wu B J, Chen F S, et al. 2023 Nature 619 738Google Scholar

    [33]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [34]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [35]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [36]

    Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B, Pan J W 2019 Science 363 261Google Scholar

    [37]

    Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, Pan J W 2022 Nature 602 229Google Scholar

    [38]

    Yang H, Cao J, Su Z, Rui J, Zhao B, Pan J W 2022 Science 378 1009Google Scholar

    [39]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [40]

    Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 311Google Scholar

    [41]

    Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar

    [42]

    Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar

    [43]

    Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar

    [44]

    Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, Li X P 2021 Phys. Rev. Lett. 126 035301Google Scholar

    [45]

    Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [46]

    Cui Y, Shen C Y, Deng M, Dong S, Chen C, Lü R, Gao B, Tey M K, You L 2017 Phys. Rev. Lett. 119 203402Google Scholar

    [47]

    Deng S J, Diao P P, Li F, Yu Q L, Yu S, Wu H B 2018 Phys. Rev. Lett. 120 125301Google Scholar

    [48]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar

    [49]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [50]

    Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [51]

    Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys. Rev. Lett. 128 160504Google Scholar

    [52]

    Li B W, Mei Q X, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys Rev. Lett. 129 140501Google Scholar

    [53]

    Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar

    [54]

    Zhang Q, Guo Y H, Ji W T, Wang M Q, Yin J, Kong F, Lin Y H, Yin C M, Shi F Z, Wang Y, Du J F 2021 Nat. Commun. 12 1529Google Scholar

    [55]

    Wang M Q, Sun H Y, Ye X Y, Yu P, Liu H Y, Zhou J W, Wang P F, Shi F Z, Wang Y, Du J F 2022 Sci. Adv. 8 eabn9573Google Scholar

    [56]

    Beullens W 2022 Annual International Cryptology Conference Santa Barbara, CA, USA, August 15–18, 2022 p464

    [57]

    Castryck W, Decru T 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Lyon, France, April 23–27, 2023 pp423–447

    [58]

    Lu B K, Sun Z, Yang T, et al. 2022 Chin. Phys. Lett. 39 080601Google Scholar

    [59]

    Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lü B L 2022 Metrologia 59 065009Google Scholar

    [60]

    Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J, Chang H 2023 Metrologia 60 015008Google Scholar

    [61]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [62]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [63]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [64]

    Ohmae N, Takamoto M, Takahashi Y, et al. 2021 Advanced Quantum Technologies 4 2100015

    [65]

    Shen Q, Guan J Y, Ren J G, et al. 2022 Nature 610 661Google Scholar

    [66]

    Fan W F, Quan W, Liu F, et al. 2019 Chinese Phys. B 28 110701Google Scholar

    [67]

    Yang Y H, Chen D Y, Jin W, Quan W, Liu F, Fang J C 2019 IEEE Access 7 148176Google Scholar

    [68]

    Xie H T, Chen B, Long J B, Xue C, Chen L K, Chen S 2020 Chin. Phys. B 29 093701Google Scholar

    [69]

    Chen B, Long J B, Xie H T, Li C Y, Chen L K, Jiang B N, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [70]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [71]

    Xie T Y, Zhao Z Y, Kong X, Ma W C, Wang M Q, Ye X Y, Yu P, Yang Z P, Xu S Y, Wang P F, Wang Y, Shi F Z, Du J F 2021 Sci. Adv. 7 eabg9204Google Scholar

    [72]

    Wei K, Zhao T, Fang X J, Xu Z T, Liu C, Cao Q, Wickenbrock A, Hu Y H, Ji W, Fang J C, Budker D 2023 Phys. Rev. Lett. 130 063201Google Scholar

    [73]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [74]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [75]

    Xia T Y, Sun W W, Ebser S, Jiang W, Yang G M, Zhu H M, Fu Y C, Huang F, Ming G D, Xia T, Lu Z T 2023 Nat. Phys. 19 904Google Scholar

    [76]

    Xu J Y, Zhu X, Tan S J, Zhang Y, Li B, Tian Y Z, Shan H, Cui X F, Zhao A D, Dong Z C, Yang J L, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar

    [77]

    H.R.6227–National Quantum Initiative Act, Smith L https://www.congress.gov/bill/115th-congress/house-bill/6227/text [2018-12-21

    [78]

    H.R.4346–Chips and Science Act, Ryan T https://www.congress.gov/bill/117th-congress/house-bill/4346 [2021-07-01

    [79]

    Quantum Technologies Flagship, European Commission https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship [2021-10-29

    [80]

    Space-based Secure Connectivity Initiative, European Commission https://ec.europa.eu/info/law/better-regulation/have-your-say/initiahtives/13189-EU-space-policy-space-based-secure-connectivity-initiative_en [2021-08-26

    [81]

    Handlungskonzept Quantentechnologien, der Bundesregierung https://qbn.world/wp-content/uploads/2023/04/Action-Plan-Quantum-Technologies-by-German-Government-2023-2026.pdf [2023-04-26

    [82]

    French Research at the Heart of the Quantum Plan, Felix S https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan [2021-02-17

    [83]

    National Quantum Strategy, GOV. UK https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-accessible-webpage [2023-12-14

    [84]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [85]

    Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar

    [86]

    Ni Z C, Li S, Deng X W, Cai Y Y, Zhang L B, Wang W T, Yang Z B, Yu H F, Yan F, Liu S, Zou C L, Sun L Y, Zheng S B, Xu Y, Yu D P 2023 Nature 616 56Google Scholar

  • 图 1  量子计算的3个发展阶段

    Figure 1.  Three steps of achieving universal quantum computing.

    图 2  “九章”系列光量子计算原型机

    Figure 2.  “Jiuzhang” series photonics quantum computing prototype.

    图 3  “祖冲之”系列超导量子计算原型机

    Figure 3.  “Zuchongzhi” series superconducting quantum computing prototype.

    图 4  我国在国际上首次实现百公里级自由空间时间频率传递[65]

    Figure 4.  Free-space dissemination of time and frequency with 10–19 instability over 113 km[65].

  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 4, 1984 pp175–179

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [4]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [5]

    Gisin N 2015 Front. Phys. 10 100307Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [8]

    D Bouwmeester, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [9]

    Boschi D, Branca S, De Martini F, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [10]

    Zukowski M, Zeilinger A, Horne M A, Ekert A K 1993 Phys Rev. Lett. 71 4287Google Scholar

    [11]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [12]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [13]

    Benioff P 1980 J. Stat. Phys. 22 563Google Scholar

    [14]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [15]

    Preskill J 2018 Quantum 2 79Google Scholar

    [16]

    Shor P W 1999 Siam Rev. 41 303Google Scholar

    [17]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140Google Scholar

    [18]

    Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43Google Scholar

    [19]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar

    [20]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [21]

    Xu P, Ma Y Q, Ren J G, et al. 2019 Science 366 132Google Scholar

    [22]

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar

    [23]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [24]

    Madsen L S, Laudenbach F, Askarani M F, et al. 2022 Nature 606 75Google Scholar

    [25]

    Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [26]

    Deng Y H, Gu Y C, Liu H L, et al. 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [27]

    Deng Y H, Gong S Q, Gu Y C, et al. 2023 Phys. Rev. Lett. 130 190601Google Scholar

    [28]

    Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar

    [29]

    Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [30]

    Pan F, Chen K, Zhang P 2022 Phys. Rev. Lett. 129 090502Google Scholar

    [31]

    Zhang X, Jiang W J, Deng J F, et al. 2022 Nature 607 468Google Scholar

    [32]

    Cao S R, Wu B J, Chen F S, et al. 2023 Nature 619 738Google Scholar

    [33]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [34]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [35]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [36]

    Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B, Pan J W 2019 Science 363 261Google Scholar

    [37]

    Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, Pan J W 2022 Nature 602 229Google Scholar

    [38]

    Yang H, Cao J, Su Z, Rui J, Zhao B, Pan J W 2022 Science 378 1009Google Scholar

    [39]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [40]

    Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 311Google Scholar

    [41]

    Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar

    [42]

    Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar

    [43]

    Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar

    [44]

    Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, Li X P 2021 Phys. Rev. Lett. 126 035301Google Scholar

    [45]

    Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [46]

    Cui Y, Shen C Y, Deng M, Dong S, Chen C, Lü R, Gao B, Tey M K, You L 2017 Phys. Rev. Lett. 119 203402Google Scholar

    [47]

    Deng S J, Diao P P, Li F, Yu Q L, Yu S, Wu H B 2018 Phys. Rev. Lett. 120 125301Google Scholar

    [48]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar

    [49]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [50]

    Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [51]

    Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys. Rev. Lett. 128 160504Google Scholar

    [52]

    Li B W, Mei Q X, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys Rev. Lett. 129 140501Google Scholar

    [53]

    Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar

    [54]

    Zhang Q, Guo Y H, Ji W T, Wang M Q, Yin J, Kong F, Lin Y H, Yin C M, Shi F Z, Wang Y, Du J F 2021 Nat. Commun. 12 1529Google Scholar

    [55]

    Wang M Q, Sun H Y, Ye X Y, Yu P, Liu H Y, Zhou J W, Wang P F, Shi F Z, Wang Y, Du J F 2022 Sci. Adv. 8 eabn9573Google Scholar

    [56]

    Beullens W 2022 Annual International Cryptology Conference Santa Barbara, CA, USA, August 15–18, 2022 p464

    [57]

    Castryck W, Decru T 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Lyon, France, April 23–27, 2023 pp423–447

    [58]

    Lu B K, Sun Z, Yang T, et al. 2022 Chin. Phys. Lett. 39 080601Google Scholar

    [59]

    Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lü B L 2022 Metrologia 59 065009Google Scholar

    [60]

    Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J, Chang H 2023 Metrologia 60 015008Google Scholar

    [61]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [62]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [63]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [64]

    Ohmae N, Takamoto M, Takahashi Y, et al. 2021 Advanced Quantum Technologies 4 2100015

    [65]

    Shen Q, Guan J Y, Ren J G, et al. 2022 Nature 610 661Google Scholar

    [66]

    Fan W F, Quan W, Liu F, et al. 2019 Chinese Phys. B 28 110701Google Scholar

    [67]

    Yang Y H, Chen D Y, Jin W, Quan W, Liu F, Fang J C 2019 IEEE Access 7 148176Google Scholar

    [68]

    Xie H T, Chen B, Long J B, Xue C, Chen L K, Chen S 2020 Chin. Phys. B 29 093701Google Scholar

    [69]

    Chen B, Long J B, Xie H T, Li C Y, Chen L K, Jiang B N, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [70]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [71]

    Xie T Y, Zhao Z Y, Kong X, Ma W C, Wang M Q, Ye X Y, Yu P, Yang Z P, Xu S Y, Wang P F, Wang Y, Shi F Z, Du J F 2021 Sci. Adv. 7 eabg9204Google Scholar

    [72]

    Wei K, Zhao T, Fang X J, Xu Z T, Liu C, Cao Q, Wickenbrock A, Hu Y H, Ji W, Fang J C, Budker D 2023 Phys. Rev. Lett. 130 063201Google Scholar

    [73]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [74]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [75]

    Xia T Y, Sun W W, Ebser S, Jiang W, Yang G M, Zhu H M, Fu Y C, Huang F, Ming G D, Xia T, Lu Z T 2023 Nat. Phys. 19 904Google Scholar

    [76]

    Xu J Y, Zhu X, Tan S J, Zhang Y, Li B, Tian Y Z, Shan H, Cui X F, Zhao A D, Dong Z C, Yang J L, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar

    [77]

    H.R.6227–National Quantum Initiative Act, Smith L https://www.congress.gov/bill/115th-congress/house-bill/6227/text [2018-12-21

    [78]

    H.R.4346–Chips and Science Act, Ryan T https://www.congress.gov/bill/117th-congress/house-bill/4346 [2021-07-01

    [79]

    Quantum Technologies Flagship, European Commission https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship [2021-10-29

    [80]

    Space-based Secure Connectivity Initiative, European Commission https://ec.europa.eu/info/law/better-regulation/have-your-say/initiahtives/13189-EU-space-policy-space-based-secure-connectivity-initiative_en [2021-08-26

    [81]

    Handlungskonzept Quantentechnologien, der Bundesregierung https://qbn.world/wp-content/uploads/2023/04/Action-Plan-Quantum-Technologies-by-German-Government-2023-2026.pdf [2023-04-26

    [82]

    French Research at the Heart of the Quantum Plan, Felix S https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan [2021-02-17

    [83]

    National Quantum Strategy, GOV. UK https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-accessible-webpage [2023-12-14

    [84]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [85]

    Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar

    [86]

    Ni Z C, Li S, Deng X W, Cai Y Y, Zhang L B, Wang W T, Yang Z B, Yu H F, Yan F, Liu S, Zou C L, Sun L Y, Zheng S B, Xu Y, Yu D P 2023 Nature 616 56Google Scholar

  • [1] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [2] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [3] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [4] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [6] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [7] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [8] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [9] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [10] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [11] Cheng Jian,  Feng Jin-Xia,  Li Yuan-Ji,  Zhang Kuan-Shou. Measurement of low-frequency signal based on quantum-enhanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [12] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [13] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [14] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [15] He Rui. Quantum communication based on the circuit coupled by SQUID and mesoscopic LC resonator. Acta Physica Sinica, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [16] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] Yin Juan, Qian Yong, Li Xiao-Qiang, Bao Xiao-Hui, Peng Cheng-Zhi, Yang Tao, Pan Ge-Sheng. High-dimensional entanglement for long distance quantum communication. Acta Physica Sinica, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [18] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [20] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
Metrics
  • Abstract views:  2315
  • PDF Downloads:  341
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2023
  • Accepted Date:  19 December 2023
  • Available Online:  20 December 2023
  • Published Online:  05 January 2024

/

返回文章
返回