Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of sand and dust turbulent atmosphere on performance of free space quantum communication

Yang Rui-Ke Li Fu-Jun Wu Fu-Ping Lu Fang Wei Bing Zhou Ye

Citation:

Influence of sand and dust turbulent atmosphere on performance of free space quantum communication

Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye
PDF
HTML
Get Citation
  • Quantum communication is a frontier hotspot of current research, and it has ideal information security. In order to enable quantum systems in arid and desertified areas to work almost under all-weather condition, it is necessary to study the attenuation of free-space quantum signal transmission and the influence of the turbulence atmosphere carrying sand and dust on communication performance. Using Mie scattering theory, multiple scattering simulation method, and atmospheric turbulence theory, the attenuation of optical wave transmission in sand and dust turbulent atmospheric channels with different visibility, and the influence of multiple scattering and turbulence on attenuation are studied. The results show that the effect of multiple scattering increases with the decrease of visibility, the turbulence effect gradually strengthens with the increase of distance. According to the quantum amplitude damped channel model, the effects of multiple scattering and turbulence in the sand and dust turbulent atmosphere with different visibility on the quantum channel capacity, fidelity and bit error rate are analyzed. The results show that as the visibility decreases, the multiple scattering effect increases, resulting in the decrease of attenuation and bit error rate, but an increase in channel capacity, fidelity and the boundaries of security key rate. The existence of turbulence in the dust atmosphere will increase the attenuation and bit error rate, but reduce the channel capacity, fidelity and security key rate. It can be seen that the influence of multiple scattering and turbulence on the communication performance, when the visibility of the sand and dust atmosphere are both low, cannot be ignored. In practical applications, the relevant parameters of quantum communication should be adaptively adjusted according to the visibility and turbulence intensity to improve the probability, efficiency and reliability of quantum communication.
      Corresponding author: Yang Rui-Ke, yrk18687@163.com
    • Funds: Supported by the Natural Science Basic Research Program of Shaanxi, China (Program No. 2021 JM-127), the 111 Project, and the Lei Hua Institute of Electronic Technology of Aviation Industry Corporation of China (No. 2018610103002381).
    [1]

    曹原 2012 博士学位论文 (合肥: 中国科学技术大学) 第3—5页

    Cao T 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) pp3–5 (in Chinese)

    [2]

    Villoresi P, Jennewein T, Tamburini F, Aspelmeyer M, Bonato C, Ursin R, Pernechele C, Luceri V, Bianco G, Zeilinger A, Barbieri C 2008 New J. Phys. 10 033038Google Scholar

    [3]

    Jin X M, Ren J G, Yang B, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 6Google Scholar

    [4]

    Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A, Pan J W 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 580 7813

    [6]

    聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 110301Google Scholar

    Nie M, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 110301Google Scholar

    [7]

    聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303Google Scholar

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303Google Scholar

    [8]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301Google Scholar

    Nie M, Wang X C, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301Google Scholar

    [9]

    聂敏, 高锟, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0701001Google Scholar

    Nie M, Gao K, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0701001Google Scholar

    [10]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 0727001Google Scholar

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Opt. Sin. 40 0727001Google Scholar

    [11]

    张秀再, 翟梦思, 周丽娟 2021 光学学报 40 1127001Google Scholar

    Zhang X Z, Zhai M S, Zhou L J 2021 Acta Opt. Sin. 40 1127001Google Scholar

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    刘涛, 朱聪, 孙春阳, 房新新, 王平平 2020 光学学报 40 0227001Google Scholar

    Liu T, Zhu C, Sun C Y, Fang X X, Wang P P 2020 Acta Opt. Sin. 40 0227001Google Scholar

    [15]

    Roux F S. 2011 Phy. Rev. A 83 053822Google Scholar

    [16]

    Vasylyev D, Semenov A A, Vogel W 2016 Phys. Rev. Lett. 117 090501Google Scholar

    [17]

    Pirandola S 2021 Phys. Rev. Res. 3 013279

    [18]

    杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205Google Scholar

    [19]

    李曙光, 刘晓东, 侯蓝田, 张焕平 2003 应用激光 23 1000Google Scholar

    Li S G, Liu X D, Hou L T, Zhang H P 2003 Appl. Laser 23 1000Google Scholar

    [20]

    杨瑞科, 朱传帅, 刘科祥 2017 红外与激光工程 46 0104006Google Scholar

    Yang R K, Zhu C S, Liu K X 2017 Infrared Laser Eng. 46 0104006Google Scholar

    [21]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [22]

    王红霞, 孙红辉, 张清华 2020 红外与激光工程 49 20201022Google Scholar

    Wang H X, Sun H H, Zhang Q H 2020 Infrared Laser Eng. 49 20201022Google Scholar

    [23]

    Li X, Hai C Z, Zhi X D, Jun Z 2020 J. Quant. Spectrosc. Radiat. Transfer 241 106744Google Scholar

    [24]

    刘邦宇, 张秀再, 徐茜 2020 光学学报 40 0327001Google Scholar

    Liu B Y, Zhang X Z, Xu Q, 2020 Acta Opt. Sin. 40 0327001Google Scholar

    [25]

    尹浩, 韩阳 2013 量子通信原理与技术 (第1版) (北京: 电子工业出版社) 第76—83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (1st Ed.) (Beijing: Electronics Industry Publishing) pp76–83 (in Chinese)

    [26]

    尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第227页

    Yin H, Ma H X 2006 Introduction to Military Quantum Communication (Beijing: Military Science Press) p227 (in Chinese)

    [27]

    裴昌幸, 朱畅华, 聂敏, 阎毅, 权东晓 2013 量子通信 (西安: 西安电子科技大学出版社) 第119—120页

    Pei C X, Zhu C H, Nie M, Yan Y, Quan D X 2013 Quantum Communication pp119–120 (Xi'an: Xidian University Press) (in Chinese)

    [28]

    张光宇, 于思源, 马晶, 谭立英 2007 光电工程 34 126Google Scholar

    Zhang G Y, Yu S Y, Ma J, Tan L Y 2007 Opto-Electron. Eng. 34 126Google Scholar

    [29]

    闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834Google Scholar

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834Google Scholar

    [30]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [31]

    马晶, 张光宇, 谭立英 2006 光学技术 32 101Google Scholar

    Ma J, Zhang G Y, Tan L Y 2006 Opt. Tech. 32 101Google Scholar

    [32]

    刘敦伟, 马喆 2021 量子通信理论与技术 (北京: 北京航空航天大学出版社) 第110页

    Liu D W, Ma Z 2021 Quantum Communication Theory and Technology (Beijing: Beihang University Press) p110 (in Chinese)

  • 图 1  光子位置和方向坐标图

    Figure 1.  Coordinate diagram of photon position and direction.

    图 2  考虑多重散射的沙尘湍流大气链路衰减随能见度与距离的变化 (a) 单次散射无湍流链路衰减; (b) 单次散射有湍流链路衰减; (c) 多重散射无湍流链路衰减; (d) 多重散射有湍流链路衰减

    Figure 2.  Variation of the attenuation on sand and dust turbulent atmospheric link with visibility and distance considering multiple scattering: (a) Attenuation with single scattering without turbulent; (b) attenuation with single scattering and turbulent; (c) attenuation with multiple scattering without turbulent; (d) attenuation with multiple scattering and turbulent.

    图 3  沙尘湍流大气下的信道容量与能见度与传输距离的关系 (a) 单次散射无湍流容量; (b) 单次散射有湍流容量; (c) 多重散射无湍流容量; (d) 多重散射有湍流容量

    Figure 3.  Variation of the channel capacity on sand and dust turbulent atmospheric with visibility and distance: (a) Capacity with single scattering without turbulent; (b) capacity with single scattering and turbulent; (c) capacity with multiple scattering without turbulent; (d) capacity with multiple scattering and turbulent.

    图 4  沙尘湍流大气下保真度与能见度、传输距离的关系 (a) 单次散射无湍流保真度; (b) 单次散射有湍流保真度; (c) 多重散射无湍流保真度; (d) 多重散射有湍流保真度

    Figure 4.  Variation of the fidelity on sand and dust turbulent atmospheric with visibility and distance: (a) Fidelity with single scattering without turbulent; (b) fidelity with single scattering and turbulent; (c) fidelity with multiple scattering without turbulent; (d) fidelity with multiple scattering and turbulent.

    图 5  沙尘湍流大气下的误码率与能见度与传输距离的关系 (a) 单次散射无湍流误码率; (b) 单次散射有湍流误码率; (c) 多重散射无湍流误码率; (d) 多重散射有湍流误码率

    Figure 5.  Variation of the BER on sand and dust turbulent atmospheric with visibility and distance: (a) BER with single scattering without turbulent; (b) BER with single scattering and turbulent; (c) BER with multiple scattering without turbulent; (d) BER with multiple scattering and turbulent.

    图 6  不同能见度沙尘湍流大气的安全密钥率上界随距离的变化 (a) 无湍流; (b) 有湍流

    Figure 6.  Variation of the upper bound of the security key rate with distance in sand and dust turbulent atmosphere with different visibility: (a) Without turbulence; (b) with turbulence.

  • [1]

    曹原 2012 博士学位论文 (合肥: 中国科学技术大学) 第3—5页

    Cao T 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) pp3–5 (in Chinese)

    [2]

    Villoresi P, Jennewein T, Tamburini F, Aspelmeyer M, Bonato C, Ursin R, Pernechele C, Luceri V, Bianco G, Zeilinger A, Barbieri C 2008 New J. Phys. 10 033038Google Scholar

    [3]

    Jin X M, Ren J G, Yang B, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 6Google Scholar

    [4]

    Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A, Pan J W 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 580 7813

    [6]

    聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 110301Google Scholar

    Nie M, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 110301Google Scholar

    [7]

    聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303Google Scholar

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303Google Scholar

    [8]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301Google Scholar

    Nie M, Wang X C, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301Google Scholar

    [9]

    聂敏, 高锟, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0701001Google Scholar

    Nie M, Gao K, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0701001Google Scholar

    [10]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 0727001Google Scholar

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Opt. Sin. 40 0727001Google Scholar

    [11]

    张秀再, 翟梦思, 周丽娟 2021 光学学报 40 1127001Google Scholar

    Zhang X Z, Zhai M S, Zhou L J 2021 Acta Opt. Sin. 40 1127001Google Scholar

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    刘涛, 朱聪, 孙春阳, 房新新, 王平平 2020 光学学报 40 0227001Google Scholar

    Liu T, Zhu C, Sun C Y, Fang X X, Wang P P 2020 Acta Opt. Sin. 40 0227001Google Scholar

    [15]

    Roux F S. 2011 Phy. Rev. A 83 053822Google Scholar

    [16]

    Vasylyev D, Semenov A A, Vogel W 2016 Phys. Rev. Lett. 117 090501Google Scholar

    [17]

    Pirandola S 2021 Phys. Rev. Res. 3 013279

    [18]

    杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205Google Scholar

    [19]

    李曙光, 刘晓东, 侯蓝田, 张焕平 2003 应用激光 23 1000Google Scholar

    Li S G, Liu X D, Hou L T, Zhang H P 2003 Appl. Laser 23 1000Google Scholar

    [20]

    杨瑞科, 朱传帅, 刘科祥 2017 红外与激光工程 46 0104006Google Scholar

    Yang R K, Zhu C S, Liu K X 2017 Infrared Laser Eng. 46 0104006Google Scholar

    [21]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [22]

    王红霞, 孙红辉, 张清华 2020 红外与激光工程 49 20201022Google Scholar

    Wang H X, Sun H H, Zhang Q H 2020 Infrared Laser Eng. 49 20201022Google Scholar

    [23]

    Li X, Hai C Z, Zhi X D, Jun Z 2020 J. Quant. Spectrosc. Radiat. Transfer 241 106744Google Scholar

    [24]

    刘邦宇, 张秀再, 徐茜 2020 光学学报 40 0327001Google Scholar

    Liu B Y, Zhang X Z, Xu Q, 2020 Acta Opt. Sin. 40 0327001Google Scholar

    [25]

    尹浩, 韩阳 2013 量子通信原理与技术 (第1版) (北京: 电子工业出版社) 第76—83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (1st Ed.) (Beijing: Electronics Industry Publishing) pp76–83 (in Chinese)

    [26]

    尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第227页

    Yin H, Ma H X 2006 Introduction to Military Quantum Communication (Beijing: Military Science Press) p227 (in Chinese)

    [27]

    裴昌幸, 朱畅华, 聂敏, 阎毅, 权东晓 2013 量子通信 (西安: 西安电子科技大学出版社) 第119—120页

    Pei C X, Zhu C H, Nie M, Yan Y, Quan D X 2013 Quantum Communication pp119–120 (Xi'an: Xidian University Press) (in Chinese)

    [28]

    张光宇, 于思源, 马晶, 谭立英 2007 光电工程 34 126Google Scholar

    Zhang G Y, Yu S Y, Ma J, Tan L Y 2007 Opto-Electron. Eng. 34 126Google Scholar

    [29]

    闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834Google Scholar

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834Google Scholar

    [30]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [31]

    马晶, 张光宇, 谭立英 2006 光学技术 32 101Google Scholar

    Ma J, Zhang G Y, Tan L Y 2006 Opt. Tech. 32 101Google Scholar

    [32]

    刘敦伟, 马喆 2021 量子通信理论与技术 (北京: 北京航空航天大学出版社) 第110页

    Liu D W, Ma Z 2021 Quantum Communication Theory and Technology (Beijing: Beihang University Press) p110 (in Chinese)

  • [1] Yang Rui-Ke, Wang Jia-Le. Effect of charged sand/dust atmosphere on performance of microwave quantum illumination radar. Acta Physica Sinica, 2024, 73(17): 170302. doi: 10.7498/aps.73.20240802
    [2] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [3] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [4] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210907
    [7] Yang Rui-Ke, Li Qian-Qian, Yao Rong-Hui. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere. Acta Physica Sinica, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [8] Nie Min, Wang Lin-Fei, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Transmission protocol and its performance analysis of quantum communication network based on packet switching. Acta Physica Sinica, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [9] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [10] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] Nie Min, Shang Peng-Gang, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation. Acta Physica Sinica, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [12] Zhou Hai-Jin, Liu Wen-Qing, Si Fu-Qi, Dou Ke. Retrieval of surface NO2 mixing ratio from multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [13] Li Shen, Ma Hai-Qiang, Wu Ling-An, Zhai Guang-Jie. High-speed polarization controller for all-fiber quantum communication systems. Acta Physica Sinica, 2013, 62(8): 084214. doi: 10.7498/aps.62.084214
    [14] Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong. Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Physica Sinica, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [15] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [16] He Rui. Quantum communication based on the circuit coupled by SQUID and mesoscopic LC resonator. Acta Physica Sinica, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [17] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [18] Yin Juan, Qian Yong, Li Xiao-Qiang, Bao Xiao-Hui, Peng Cheng-Zhi, Yang Tao, Pan Ge-Sheng. High-dimensional entanglement for long distance quantum communication. Acta Physica Sinica, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [19] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [20] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
Metrics
  • Abstract views:  4269
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2022
  • Accepted Date:  24 July 2022
  • Available Online:  14 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回