Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement

Zhang Jiao-Yang Cong Shuang Wang Chi Sajede Harraz

Citation:

Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement

Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz
cstr: 32037.14.aps.71.20220760
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • All open quantum systems are affected by environmental noises due to their interactions with the external environment and inevitably suffer from decoherence. Hence, it is fundamentally important and necessary to investigate decoherence suppression for open quantum systems via proper control strategies. Inspired by feed-forward control in the classical control theory, this paper proposes a novel decoherence suppression scheme via weak measurement and environment-assisted measurement. We first take the single-qubit system as an example to illustrate steps of the proposed scheme. To be specific, the single-qubit system is transferred to a state that is more robust to environmental noises via pre-weak measurement operators and feed-forward control operators before the decoherence channel, a measurement is performed on the environment coupled to the protected qubit during the decoherence channel, and the initial state is recovered via reversed feed-forward control operators and post-weak measurement operators after the decoherence channel. The optimum post-weak measurement strength is derived by setting the normalized final state equal to the initial state. By considering the optimum post-weak measurement strength, analytical formulas of the total success probability and the total fidelity are deduced. The proposed scheme is applicable for protecting quantum states from arbitrary decoherence channels with at least one invertible Kraus operator although only the amplitude damping channel and the phase damping channel are taken into account. Provided that the decay rate of the amplitude or phase damping channel is completely known, one can always achieve unit fidelity even for heavy damping cases, which is the biggest advantage of the proposed scheme. Influences of several parameters including strengths of weak measurements, the initial state and the decay rate of the decoherence channel on the performance of decoherence suppression are analyzed, and detailed procedures of a single-qubit pure and mixed state protection are presented on the Bloch sphere, respectively. Subsequently, the Kronecker product is employed to construct operators of dimension $ 2^N \times 2^N$, the proposed scheme is extended to the general N-qubit case, and unified analytical formulas of the total success probability and the total fidelity are deduced. By applying the proposed scheme to the protection of two-qubit entangled states, it is demonstrated that post-weak measurement operators are not necessary sometimes because of the particular structure of two-qubit entangled states. Furthermore, two numerical simulations are designed to enhance the concurrence of two-qubit entangled states and improve the average fidelity of the standard quantum teleportation in a noisy environment. Analytical formulas of the improvement of concurrence and the average teleportation fidelity are deduced, and the superiority of the proposed scheme is highlighted in comparison with unprotected scenarios.
      Corresponding author: Cong Shuang, scong@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61973290)
    [1]

    丛爽, 匡森 2020 量子系统控制理论与方法 (合肥: 中国科学技术大学出版社) 第32–33页

    Cong S, Kuang S 2020 Control Theory and Methods of Quantum Systems (Hefei: Press of University of Science and Technology of China) pp32–33 (in Chinese)

    [2]

    Cardoso E S, de Oliveira M D, Furuya K 2005 Phys. Rev. A 72 042320Google Scholar

    [3]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 932Google Scholar

    [4]

    刘其功, 计新 2012 物理学报 61 230303Google Scholar

    Liu Q G, Ji X 2012 Acta Phys. Sin. 61 230303Google Scholar

    [5]

    Piao M Z, Ji X 2012 J. Mod. Opt. 59 21Google Scholar

    [6]

    Jahangir R, Arshed N, Toor A H 2015 Quantum Inf. Process. 14 765Google Scholar

    [7]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 010303Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 010303Google Scholar

    [8]

    D'Arrigo A, Benenti G, Falci G, Macchiavello C 2015 Phys. Rev. A 92 062342Google Scholar

    [9]

    胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和 2022 物理学报 71 070301Google Scholar

    Hu Q, Zeng B Y, Gu P Y, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 070301Google Scholar

    [10]

    Harraz S, Cong S, Nieto J J 2022 Int. J. Quantum Inf. 20 2250007Google Scholar

    [11]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594Google Scholar

    [12]

    Kempe J, Bacon D, Lidar D A, Whaley K B 2001 Phys. Rev. A 63 392Google Scholar

    [13]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498Google Scholar

    [14]

    Chen M, Kuang S, Cong S 2017 J. Franklin Inst. 354 439Google Scholar

    [15]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [16]

    Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R, Taminian T H 2016 Nat. Commun. 7 11526Google Scholar

    [17]

    Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H, Schoelkopf R J 2016 Nature 536 441Google Scholar

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [20]

    Du J, Rong X, Zhao N, Wang Y, Yang J, Liu R B 2009 Nature 461 1265Google Scholar

    [21]

    汪野, 张静宁, 金奇奂 2019 物理学报 68 030306Google Scholar

    Wang Y, Zhang J N, Kim K 2019 Acta Phys. Sin. 68 030306Google Scholar

    [22]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329Google Scholar

    [23]

    Gillett G G, Dalton R B, Lanyon B P, Almeida M P, Barbieri M, Pryde G J, O'Brien J L, Resch K J, Bartlett S D, White A G 2010 Phys. Rev. Lett. 104 080503Google Scholar

    [24]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103Google Scholar

    [25]

    黄江 2017 物理学报 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [26]

    Wang C Q, Xu B M, Zou J, He Z, Yan Y, Li J G, Shao B 2014 Phys. Rev. A 89 032303Google Scholar

    [27]

    Harraz S, Cong S, Li K 2020 Quantum Inf. Process. 19 250Google Scholar

    [28]

    Harraz S, Cong S, Kuang S 2019 J. Syst. Sci. Complex. 32 1264Google Scholar

    [29]

    Gregoratti M, Werner R F 2003 J. Mod. Opt. 50 915Google Scholar

    [30]

    Wang K, Zhao X, Yu T 2014 Phys. Rev. A 89 042320Google Scholar

    [31]

    Xu X M, Cheng L Y, Liu A P, Su S L, Wang H F, Zhang S 2015 Quantum Inf. Process. 14 4147Google Scholar

    [32]

    Wu H J, Jin Z, Zhu A D 2018 Int. J. Theor. Phys. 57 1235Google Scholar

    [33]

    Harraz S, Cong S, Nieto J J 2021 Eur. Phys. J. Plus 136 851Google Scholar

    [34]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp26–28

  • 图 1  整个退相干抑制方案的流程图

    Figure 1.  Schematic diagram of the whole decoherence suppression scheme

    图 2  后-弱测量的强度最优时$g_{{\rm{tot}}}^{(1)}$pr的关系

    Figure 2.  $g_{{\rm{tot}}}^{(1)}$ is a function of p and r with the optimum post-weak measurement strength

    图 3  固定α$r = 0.5$的情况下${\rm{fid}}_{{\rm{tot}}}^{(1)}$pq的关系 (a) $|\alpha | = 0.2$; (b) $|\alpha | = 0.8$

    Figure 3.  ${\rm{fid}}_{{\rm{tot}}}^{(1)}$ is a function of p and q with fixed α and $r = 0.5$: (a) $|\alpha | = 0.2$; (b) $|\alpha | = 0.8$

    图 4  固定r的情况下$g_{{\rm{tot}}}^{(1)}$pq的关系 (a) $r = 0.3$; (b) $r = 0.9$

    Figure 4.  $g_{{\rm{tot}}}^{(1)}$ is a function of p and q with fixed r: (a) $r = 0.3$; (b) $r = 0.9$

    图 5  固定r的情况下${\rm{fid}}_{{\rm{av}}}^{(1)}$pq的关系 (a) $r = 0.3$; (b) $r = 0.9$

    Figure 5.  ${\rm{fid}}_{{\rm{av}}}^{(1)}$ is a function of p and q with fixed r: (a) $r = 0.3$; (b) $r = 0.9$

    图 6  Bloch球上单量子比特状态保护的详细过程 (a) 纯态的保护; (b) 混合态的保护

    Figure 6.  Detailed procedure of the single-qubit state protection process on the Bloch sphere: (a) pure state protection; (b) mixed state protection.

    图 7  ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}$${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}$与初始纯态和r的关系 (a) ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}(|\alpha |, ~r)$; (b) ${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}(|\alpha |, ~r)$

    Figure 7.  ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}$ and ${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}$ are a function of the initial pure state and r: (a) ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}(|\alpha |, ~r)$; (b) ${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}(|\alpha |, ~r)$

    图 8  $g_{{\rm{tot}}}^{(2)'}$$g_{{\rm{tot}}}^{(2)}$pr的关系 (a) $g_{{\rm{tot}}}^{(2)'}(p, r)$; (b) $g_{{\rm{tot}}}^{(2)}(p, r)$

    Figure 8.  $g_{{\rm{tot}}}^{(2)'}$ and $g_{{\rm{tot}}}^{(2)}$ are a function of p and r: (a) $g_{{\rm{tot}}}^{(2)'}(p, r)$; (b) $g_{{\rm{tot}}}^{(2)}(p, r)$

    图 9  $C_{{\rm{improve}}({\rm{AD}})}^{(2)}$$C_{{\rm{improve}}({\rm{PD}})}^{(2)}$与初始纠缠态和r的关系 (a) $C_{{\rm{improve}}({\rm{AD}})}^{(2)}(|\alpha |, r)$; (b) $C_{{\rm{improve}}({\rm{PD}})}^{(2)}(|\alpha |, r)$

    Figure 9.  $C_{{\rm{improve}}({\rm{AD}})}^{(2)}$ and $C_{{\rm{improve}}({\rm{PD}})}^{(2)}$ are a function of the initial entangled state and r: (a) $C_{{\rm{improve}}({\rm{AD}})}^{(2)}(|\alpha |, r)$; (b) $C_{{\rm{improve}}({\rm{PD}})}^{(2)}(|\alpha |, r)$

    图 10  受保护的量子隐形传态的原理图

    Figure 10.  Schematic diagram of the protected quantum teleportation

  • [1]

    丛爽, 匡森 2020 量子系统控制理论与方法 (合肥: 中国科学技术大学出版社) 第32–33页

    Cong S, Kuang S 2020 Control Theory and Methods of Quantum Systems (Hefei: Press of University of Science and Technology of China) pp32–33 (in Chinese)

    [2]

    Cardoso E S, de Oliveira M D, Furuya K 2005 Phys. Rev. A 72 042320Google Scholar

    [3]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 932Google Scholar

    [4]

    刘其功, 计新 2012 物理学报 61 230303Google Scholar

    Liu Q G, Ji X 2012 Acta Phys. Sin. 61 230303Google Scholar

    [5]

    Piao M Z, Ji X 2012 J. Mod. Opt. 59 21Google Scholar

    [6]

    Jahangir R, Arshed N, Toor A H 2015 Quantum Inf. Process. 14 765Google Scholar

    [7]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 010303Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 010303Google Scholar

    [8]

    D'Arrigo A, Benenti G, Falci G, Macchiavello C 2015 Phys. Rev. A 92 062342Google Scholar

    [9]

    胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和 2022 物理学报 71 070301Google Scholar

    Hu Q, Zeng B Y, Gu P Y, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 070301Google Scholar

    [10]

    Harraz S, Cong S, Nieto J J 2022 Int. J. Quantum Inf. 20 2250007Google Scholar

    [11]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594Google Scholar

    [12]

    Kempe J, Bacon D, Lidar D A, Whaley K B 2001 Phys. Rev. A 63 392Google Scholar

    [13]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498Google Scholar

    [14]

    Chen M, Kuang S, Cong S 2017 J. Franklin Inst. 354 439Google Scholar

    [15]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [16]

    Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R, Taminian T H 2016 Nat. Commun. 7 11526Google Scholar

    [17]

    Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H, Schoelkopf R J 2016 Nature 536 441Google Scholar

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [20]

    Du J, Rong X, Zhao N, Wang Y, Yang J, Liu R B 2009 Nature 461 1265Google Scholar

    [21]

    汪野, 张静宁, 金奇奂 2019 物理学报 68 030306Google Scholar

    Wang Y, Zhang J N, Kim K 2019 Acta Phys. Sin. 68 030306Google Scholar

    [22]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329Google Scholar

    [23]

    Gillett G G, Dalton R B, Lanyon B P, Almeida M P, Barbieri M, Pryde G J, O'Brien J L, Resch K J, Bartlett S D, White A G 2010 Phys. Rev. Lett. 104 080503Google Scholar

    [24]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103Google Scholar

    [25]

    黄江 2017 物理学报 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [26]

    Wang C Q, Xu B M, Zou J, He Z, Yan Y, Li J G, Shao B 2014 Phys. Rev. A 89 032303Google Scholar

    [27]

    Harraz S, Cong S, Li K 2020 Quantum Inf. Process. 19 250Google Scholar

    [28]

    Harraz S, Cong S, Kuang S 2019 J. Syst. Sci. Complex. 32 1264Google Scholar

    [29]

    Gregoratti M, Werner R F 2003 J. Mod. Opt. 50 915Google Scholar

    [30]

    Wang K, Zhao X, Yu T 2014 Phys. Rev. A 89 042320Google Scholar

    [31]

    Xu X M, Cheng L Y, Liu A P, Su S L, Wang H F, Zhang S 2015 Quantum Inf. Process. 14 4147Google Scholar

    [32]

    Wu H J, Jin Z, Zhu A D 2018 Int. J. Theor. Phys. 57 1235Google Scholar

    [33]

    Harraz S, Cong S, Nieto J J 2021 Eur. Phys. J. Plus 136 851Google Scholar

    [34]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp26–28

  • [1] LIU Chang, SUN Mingshuo, LUO Yizhen, DONG Shuyan, ZHANG Chunhui, WANG Qin. Dual-paramter-scanning-based quantum- memory- assisted measurement-device-independent quantum key distribution protocol. Acta Physica Sinica, 2026, 75(1): 010602. doi: 10.7498/aps.75.20251171
    [2] Wang Ao, Zhang Min, Gao Shuqi, Liu Qingchen, He Li, Guo Xiaomin, Guo Yanqiang, Xiao Liantuan. Tunable Spectrum Dual-Parameter Multiplexed Quantum Weak Measurement. Acta Physica Sinica, 2026, 75(4): . doi: 10.7498/aps.75.20251404
    [3] Hu Qiang, Zeng Bai-Yun, Gu Peng-Yu, Jia Xin-Yan, Fan Dai-He. Testing quantum nonlocality of two-qubit entangled states under decoherence. Acta Physica Sinica, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [4] Ding Chen, Li Tan, Zhang Shuo, Guo Chu, Huang He-Liang, Bao Wan-Su. A quantum state readout method based on a single ancilla qubit. Acta Physica Sinica, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [5] Song Yue, Li Jun-Qi, Liang Jiu-Qing. Dynamics of quantum correlation for three qubits in hierarchical environment. Acta Physica Sinica, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [6] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [7] Ling Zhong-Huo, Wang Shuai, Zhang Jin-Cang, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai. The theoretical study of terahertz-streaking photoionization for ultrafast imaging of density matrix in rubidium atom. Acta Physica Sinica, 2020, 69(17): 173401. doi: 10.7498/aps.69.20200218
    [8] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [9] Yan Li-Yun, Liu Jia-Sheng, Zhang Hao, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang. Measurement of backscattered electric field of chipless radio frequency identification tag based on Rydberg atoms. Acta Physica Sinica, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [10] Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing. Measurement of weak static magnetic field with nitrogen-vacancy color center. Acta Physica Sinica, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [11] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [12] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [13] Zong Xiao-Lan, Yang Ming. Scheme for protecting multipartite quantum entanglement. Acta Physica Sinica, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [14] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [15] Wang Mei-Jiao, Xia Yun-Jie. Protecting quantum entanglement at finite temperature by the weak measurements. Acta Physica Sinica, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [16] Dong Chen, Zhao Shang-Hong, Zhang Ning, Dong Yi, Zhao Wei-Hu, Liu Yun. Measurement-device-independent quantum key distribution with odd coherent state. Acta Physica Sinica, 2014, 63(20): 200304. doi: 10.7498/aps.63.200304
    [17] Zhang Hao-Liang, Jia Fang, Xu Xue-Xiang, Guo Qin, Tao Xiang-Yang, Hu Li-Yun. Decoherence of a photon-subtraction-addition coherent state in a thermal environment. Acta Physica Sinica, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [18] Zhao Wen-Lei, Wang Jian-Zhong, Dou Fu-Quan. Decoherence by a classically small influence. Acta Physica Sinica, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [19] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Measurement of quantum states with incoherent light. Acta Physica Sinica, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [20] MEASURENENTS OF THE CROSS SECTION OF ELECTRON PAIR PRODUCTION NEAR THRESHOLD USING A LOW INTENSITY Co r一RAY SOURCE. Acta Physica Sinica, 1989, 38(8): 1364-1368. doi: 10.7498/aps.38.1364
Metrics
  • Abstract views:  7558
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2022
  • Accepted Date:  13 July 2022
  • Available Online:  02 November 2022
  • Published Online:  20 November 2022
  • /

    返回文章
    返回