Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements

Wu Ying Li Jin-Fang Liu Jin-Ming

Citation:

Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements

Wu Ying, Li Jin-Fang, Liu Jin-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The purpose of quantum teleportation is to achieve perfect transmission of quantum information from one site to another distant site. In the teleportation process, the quantum system is inevitably affected by its surrounding environment, causing the system to lose its coherence, which will result in distortion of the transmitted information. In recent years, weak measurement and measurement reversal have been proposed to suppress the decoherence of quantum entanglement and protect some quantum states. On the other hand, quantum Fisher information (QFI) is an important physical quantity in quantum metrology, which can give the optimal value estimating the accuracy of parameters. As is well known, QFI is highly susceptible to environmental noise and can lead its measurement accuracy to decrease. Therefore, it is of great importance to examine how to protect QFI from being influenced by the external circumstance during the teleportation procedure. In this paper, we study how to improve the QFI of teleporting a single-qubit state via a Greenberger-Horne-Zeilinger state in a finite temperature environment with the technique of weak measurement and weak measurement reversal. According to different qubit transmission cases of three quantum teleportation schemes, we consider their respective QFIs in detail. After constructing the quantum logic circuit of each teleportation scheme, we first analyze the variance trend of QFI against the generalized amplitude damping noise parameters. Then by introducing weak measurement and measurement reversal on each noise particle of the three schemes, we optimize the related partial measurement parameters and explore the corresponding improved QFI, namely, the difference between the QFI with optimal partial measurements and that without partial measurements. We find that optimizing partial measurements can efficiently enhance the QFI of the teleported state for the three kinds of teleportation schemes at finite temperature. Moreover, with the value of p fixed, the lower the environment temperature, the larger the value of the improved QFI is. Our results could be useful in further understanding the applications of weak measurement and measurement reversal to the quantum communication process and may shed light on estimating some relevant quantum parameters and implementing quantum information tasks.
      Corresponding author: Liu Jin-Ming, jmliu@phy.ecnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0501601) and the National Natural Science Foundation of China (Grant No. 11174081).
    [1]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140

    [2]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Gottesman D, Chuang I L 1999 Nature 402 390

    [5]

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303 (in Chinese) [杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 物理学报 66 230303]

    [6]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [7]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [8]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [9]

    Dell'Anno F, de Siena S, Illuminati F 2010 Phys. Rev. A 81 012333

    [10]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [11]

    Bell B A, Markham D, Herrera-Marti D A, Marin A, Wadsworth W J, Rarity J G, Tame M S 2014 Nat. Commun. 5 5480

    [12]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315

    [13]

    Deng F G, Li C Y, Li Y S, Zhou H Y, Wang Y 2005 Phys. Rev. A 72 022338

    [14]

    Zhou P, Li X H, Deng F G, Zhou H Y 2007 J. Phys. A: Math. Theor. 40 13121

    [15]

    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306

    [16]

    Huelga S F, Plenio M B, Vaccaro J A 2002 Phys. Rev. A 65 042316

    [17]

    Han X P, Liu J M 2008 Phys. Scr. 78 015001

    [18]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [19]

    Pati A K, Agrawal P 2007 Phys. Lett. A 371 185

    [20]

    Chen X B, Du J Z, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 771

    [21]

    Yan F L, Yan T 2010 Chin. Sci. Bull. 55 902

    [22]

    Zha X W, Zou Z C, Qi J X, Song H Y 2013 Int. J. Theor. Phys. 52 1740

    [23]

    Li Y H, Nie L P 2013 Int. J. Theor. Phys. 52 1630

    [24]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [25]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70

    [26]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [27]

    Zhong W, Sun Z, Ma J, Wang X, Nori F 2013 Phys. Rev. A 87 022337

    [28]

    Giovaneti V, Lloyd S, Maccone L 2004 Science 306 1330

    [29]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [30]

    Paraoanu G S 2011 EPL 93 64002

    [31]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103

    [32]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329

    [33]

    Sun Q Q, Amri M A, Zubairy M S 2009 Phys. Rev. A 80 033838

    [34]

    Song W, Yang M, Cao Z L 2014 Phys. Rev. A 89 014303

    [35]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [36]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [37]

    Xiao X 2014 Phys. Scr. 89 065102

    [38]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

    [39]

    Huang J 2017 Acta Phys. Sin. 66 010301 (in Chinese) [黄江 2017 物理学报 66 010301]

    [40]

    Guo J L, Wei J L 2015 Ann. Phys. 354 522

    [41]

    Shi J D, Wang D, Ma W C, Ye L 2015 Quantum Inf. Process. 14 3569

    [42]

    Yang R Y, Liu J M 2017 Quantum. Inf. Process. 16 125

    [43]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117

    [44]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604

    [45]

    Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M, Korotkov A N 2008 Phys. Rev. Lett. 101 200401

    [46]

    Groen J P, Riste D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506

    [47]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [48]

    Qiu L, Tang G, Yang X Q, Wang A M 2014 Ann. Phys. 350 137

    [49]

    Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307

    [50]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p380

  • [1]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140

    [2]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Gottesman D, Chuang I L 1999 Nature 402 390

    [5]

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303 (in Chinese) [杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 物理学报 66 230303]

    [6]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [7]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [8]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [9]

    Dell'Anno F, de Siena S, Illuminati F 2010 Phys. Rev. A 81 012333

    [10]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [11]

    Bell B A, Markham D, Herrera-Marti D A, Marin A, Wadsworth W J, Rarity J G, Tame M S 2014 Nat. Commun. 5 5480

    [12]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315

    [13]

    Deng F G, Li C Y, Li Y S, Zhou H Y, Wang Y 2005 Phys. Rev. A 72 022338

    [14]

    Zhou P, Li X H, Deng F G, Zhou H Y 2007 J. Phys. A: Math. Theor. 40 13121

    [15]

    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306

    [16]

    Huelga S F, Plenio M B, Vaccaro J A 2002 Phys. Rev. A 65 042316

    [17]

    Han X P, Liu J M 2008 Phys. Scr. 78 015001

    [18]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [19]

    Pati A K, Agrawal P 2007 Phys. Lett. A 371 185

    [20]

    Chen X B, Du J Z, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 771

    [21]

    Yan F L, Yan T 2010 Chin. Sci. Bull. 55 902

    [22]

    Zha X W, Zou Z C, Qi J X, Song H Y 2013 Int. J. Theor. Phys. 52 1740

    [23]

    Li Y H, Nie L P 2013 Int. J. Theor. Phys. 52 1630

    [24]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [25]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70

    [26]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [27]

    Zhong W, Sun Z, Ma J, Wang X, Nori F 2013 Phys. Rev. A 87 022337

    [28]

    Giovaneti V, Lloyd S, Maccone L 2004 Science 306 1330

    [29]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [30]

    Paraoanu G S 2011 EPL 93 64002

    [31]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103

    [32]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329

    [33]

    Sun Q Q, Amri M A, Zubairy M S 2009 Phys. Rev. A 80 033838

    [34]

    Song W, Yang M, Cao Z L 2014 Phys. Rev. A 89 014303

    [35]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [36]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [37]

    Xiao X 2014 Phys. Scr. 89 065102

    [38]

    Wang S C, Yu Z W, Zou W J, Wang X B 2014 Phys. Rev. A 89 022318

    [39]

    Huang J 2017 Acta Phys. Sin. 66 010301 (in Chinese) [黄江 2017 物理学报 66 010301]

    [40]

    Guo J L, Wei J L 2015 Ann. Phys. 354 522

    [41]

    Shi J D, Wang D, Ma W C, Ye L 2015 Quantum Inf. Process. 14 3569

    [42]

    Yang R Y, Liu J M 2017 Quantum. Inf. Process. 16 125

    [43]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117

    [44]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604

    [45]

    Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M, Korotkov A N 2008 Phys. Rev. Lett. 101 200401

    [46]

    Groen J P, Riste D, Tornberg L, Cramer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506

    [47]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [48]

    Qiu L, Tang G, Yang X Q, Wang A M 2014 Ann. Phys. 350 137

    [49]

    Xiao X, Yao Y, Zhong W J, Li Y L, Xie Y M 2016 Phys. Rev. A 93 012307

    [50]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p380

  • [1] Ren Ya-Lei, Zhou Tao. Quantum Fisher information in moving reference frame. Acta Physica Sinica, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [3] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [5] Niu Ming-Li, Wang Yue-Ming, Li Zhi-Jian. Estimation of light-matter coupling constant under dispersive interaction based on quantum Fisher information. Acta Physica Sinica, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [6] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [7] Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz. Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement. Acta Physica Sinica, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [8] Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming. Influence of entanglement on precision of parameter estimation in quantum weak measurement. Acta Physica Sinica, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [9] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [11] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [12] Wang Mei-Jiao, Xia Yun-Jie. Protecting quantum entanglement at finite temperature by the weak measurements. Acta Physica Sinica, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [13] Liu Shi-You, Zheng Kai-Min, Jia Fang, Hu Li-Yun, Xie Fang-Sen. Entanglement of one- and two-mode combination squeezed thermal states and its application in quantum teleportation. Acta Physica Sinica, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [14] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [15] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [16] Qiao Pan-Pan, Ahmad Abliz, Cai Jiang-Tao, Lu Jun-Zhe, Maimaitiyiming Tusun, Ribigu Maimaitiming. Quantum teleportation using superconducting charge qubits in thermal equilibrium. Acta Physica Sinica, 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [17] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [18] Bing He, He Rui. A new quantum teleportation protocal. Acta Physica Sinica, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [19] Zhou Xiao-Qing, Wu Yun-Wen. Discussion on building the net of quantum teleportation using three-particle entangled states. Acta Physica Sinica, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [20] Zhang Qian, Li Fu-Li, Li Hong-Rong. Teleportation of a two-mode Gaussian state through double two-mode-squeezed-state quantum channels. Acta Physica Sinica, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
Metrics
  • Abstract views:  7157
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2018
  • Accepted Date:  03 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回