-
Quantum communication is brand new way of communication in which quantum entanglement is used to transmit information. It is an interdisciplinary subject combining quantum informatics with modern communication theory. Motivated by the communication requirements for underwater sensor networks, submarines, etc., underwater optical communication has been developing rapidly in recent years due to the ideal information security of quantum communication. However, the research on the performance of underwater quantum communication in sea has not yet been fully developed because of a series of factors such as surge, salinity and seaweed and so on. In this paper, the influence of surge in non-uniform water flow on the underwater quantum communication is studied theoretically and experimentally. Firstly, a new Boussinesq equation with a given flow function is derived based on the horizontal and vertical wave velocity of the free surface to represent the free surface boundary conditions. On the other hand, In view of the nonlinear motion of movement, the complexity of change and the randomness of the distribution, the spectrum is used for numerically calculating the surge. The characteristics of wave motion are described by wave height, period and wavelength. Secondly, the influence of surge on the entanglement of underwater quantum channel is analyzed. It is proved that the wave height of surge and the change of the cycle affect quantum communication due to the destruction of the quantum coherence and the reduction in quantum entanglement degree. Thirdly, the influence of surge motion on the quantum channel capacity is studied. The influence of the relation between the wavelength and the transmission cycle on the quantum channel capacity is simulated. The relationship between the physical characteristics of surge wave and the capacity of depolarized channel is established. Fourthly, the influence of surge motion on error rate in quantum key distribution is studied. The simulation results show that when the sea surface wind speed changes in a range of 0-20.5 m/s, the propagation cycle is increased gradually. The channel entanglement is increased from 0.0012 to 0.8426, and the channel capacity is reduced from 0.8736 to 0.1024. In the key distribution process, the quantum bit error rate increases from 0.1651 to 0.4812. Therefore, in underwater quantum communication, the parameters of the system should be adjusted adaptively according to the varying degree of the surge movement.
-
Keywords:
- underwater quantum communication /
- surge movement /
- channel entanglement degree /
- quantum bit error rate
[1] Peng C Z, Yang T, Bao X H 2005 Phys. Rev. Lett. 94 4
[2] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nat. Photon. 4 376
[3] Yin J, Ren J G, Lu H 2012 Nature 488 185
[4] Wang J Y, Yang B, Liao S K 2013 Nature Photon. 7 387
[5] Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William N, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269
[6] Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]
[7] Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303 (in Chinese) [聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303]
[8] Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 020303 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 020303]
[9] Yoon S B, Liu P L F 1989 J. Fluid Mech. 205 397
[10] Li Y C, Zhang Y G 1996 J. Hydrody. 11 205 (in Chinese) [李玉成, 张永刚 1996 水动力学研究与进展 11 205]
[11] Sverdrup H U, Munk W H 1947 J. Hydrographic Office 601 44
[12] Sverdrup H U 1947 American Geophysical Union. 28 407
[13] Bretschneider C L 1952 American Geophysical Union. 33 381
[14] Wang Y L, Zhang H S, Miao G P 2005 China Ocean Engineering 19 49
[15] Higgins M S 1975 J. Geopbys. Res. 80 2688
[16] Pierson W J, Moscowitz L 1964 J. Geophys. Res. 69 5181
[17] Higgins M S 1970 J. Geophys. Res. 75 6778
[18] Wen S C 1984 Wave Theory and Calculation Principle (Beijing:Science Press) pp203-210 (in Chinese) [文圣常 1984 海浪理论与计算原理 (北京: 科学出版社) 第203–210页]
[19] Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]
[20] Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p227 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第227页]
[21] Yin H, Han Y 2013 Quantum Communications Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]
[22] Chakrabarti S K, Cooley R P 1997 Coastal Engineering 16 63
[23] Pan J C, Chen Z H 1996 J. Marine Science Bulletin 5 1 (in Chinese) [潘锦嫦, 陈志宏 1996 海洋通报 5 1]
[24] Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]
-
[1] Peng C Z, Yang T, Bao X H 2005 Phys. Rev. Lett. 94 4
[2] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nat. Photon. 4 376
[3] Yin J, Ren J G, Lu H 2012 Nature 488 185
[4] Wang J Y, Yang B, Liao S K 2013 Nature Photon. 7 387
[5] Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William N, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269
[6] Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]
[7] Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303 (in Chinese) [聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303]
[8] Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 020303 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 020303]
[9] Yoon S B, Liu P L F 1989 J. Fluid Mech. 205 397
[10] Li Y C, Zhang Y G 1996 J. Hydrody. 11 205 (in Chinese) [李玉成, 张永刚 1996 水动力学研究与进展 11 205]
[11] Sverdrup H U, Munk W H 1947 J. Hydrographic Office 601 44
[12] Sverdrup H U 1947 American Geophysical Union. 28 407
[13] Bretschneider C L 1952 American Geophysical Union. 33 381
[14] Wang Y L, Zhang H S, Miao G P 2005 China Ocean Engineering 19 49
[15] Higgins M S 1975 J. Geopbys. Res. 80 2688
[16] Pierson W J, Moscowitz L 1964 J. Geophys. Res. 69 5181
[17] Higgins M S 1970 J. Geophys. Res. 75 6778
[18] Wen S C 1984 Wave Theory and Calculation Principle (Beijing:Science Press) pp203-210 (in Chinese) [文圣常 1984 海浪理论与计算原理 (北京: 科学出版社) 第203–210页]
[19] Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]
[20] Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p227 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第227页]
[21] Yin H, Han Y 2013 Quantum Communications Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]
[22] Chakrabarti S K, Cooley R P 1997 Coastal Engineering 16 63
[23] Pan J C, Chen Z H 1996 J. Marine Science Bulletin 5 1 (in Chinese) [潘锦嫦, 陈志宏 1996 海洋通报 5 1]
[24] Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]
Catalog
Metrics
- Abstract views: 5992
- PDF Downloads: 136
- Cited By: 0