Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phonon-mediated many-body quantum entanglement and logic gates in ion traps

Liu Teng Lu Peng-Fei Hu Bi-Ying Wu Hao Lao Qi-Feng Bian Ji Liu Yang Zhu Feng Luo Le

Citation:

Phonon-mediated many-body quantum entanglement and logic gates in ion traps

Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le
PDF
HTML
Get Citation
  • The high-fidelity multi-ion entangled states and quantum gates are the basis for trapped-ion quantum computing. Among the developed quantum gate schemes, Mølmer-Sørensen gate is a relatively mature experimental technique to realize multi-ion entanglement and quantum logic gates. In recent years, there have also been schemes to realize ultrafast quantum entanglement and quantum logic gates that operate outside the Lamb-Dicke regime by designing ultrafast laser pulse sequences. In such a many-body quantum system, these entanglement gates couple the spin states between ions by driving either the phonon energy level or the motional state of the ion chain. To improve the fidelity of quantum gates, the modulated laser pulses or the appropriately designed pulse sequences are applied to decouple the multi-mode motional states. In this review, we summarize and analyze the essential aspects of realizing these entanglement gates from both theoretical and experimental points of view. We also reveal that the basic physical process of realizing quantum gates is to utilize nonlinear interactions in non-equilibrium processes through driving the motional states of an ion chain with laser fields.
      Corresponding author: Liu Teng, liut87@mail2.sysu.edu.cn ; Luo Le, luole5@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774436, 11974434, 12074439), the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515011159), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the Science and Technology Program of Guangzhou, China (Grant No. 202102080380), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, Sun Yat-sen University (Grant No. 2021qntd28), the China Postdoctoral Science Foundation (Grant No. 2021M703768), the Guangdong Province Pearl River Youth Talents Program, China (Grant No. 2017GC010656), and the Central-Leading-Local Scientific and Technological Development Foundation, China (Grant No. 2021Szvup172)
    [1]

    Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J, Blatt R 2003 Nature 422 408Google Scholar

    [2]

    Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J, Monroe C 2000 Nature 404 256Google Scholar

    [3]

    Marquet C, Schmidt-Kaler F, James D F V 2003 Appl. Phys. B 76 199Google Scholar

    [4]

    James D F V 1998 Appl. Phys. B: Lasers Opt. 66 181Google Scholar

    [5]

    Zhu S L, Monroe C, Duan L M 2006 Phys. Rev. Lett. 97 050505Google Scholar

    [6]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [7]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259Google Scholar

    [8]

    Meekhof D M, Leibfried D, Monroe C, King B E, Itano W M, Wineland D J 1997 Brazilian J. Phys. 27 15

    [9]

    Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403Google Scholar

    [10]

    Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J, Gould P 1995 Phys. Rev. Lett. 75 4011Google Scholar

    [11]

    King B E, Wood C S, Myatt C J, Turchette Q A, Leibfried D, Itano W M, Monroe C, Wineland D J 1998 Phys. Rev. Lett. 81 1525Google Scholar

    [12]

    Mølmer K, Sørensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [13]

    Sørensen A, Mølmer K 1999 Phys. Rev. Lett. 82 1971Google Scholar

    [14]

    Kim K, Chang M S, Islam R, Korenblit S, Duan L M, Monroe C 2009 Phys. Rev. Lett. 103 120502Google Scholar

    [15]

    Leung P H, Landsman K A, Figgatt C, Linke N M, Monroe C, Brown K R 2018 Phys. Rev. Lett. 120 020501Google Scholar

    [16]

    Landsman K A, Wu Y K, Leung P H, Zhu D W, Linke N M, Brown K R, Duan L M, Monroe C 2019 Phys. Rev. A 100 022332Google Scholar

    [17]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nat. Phys. 4 463Google Scholar

    [18]

    Roos C F 2008 New J. Phys. 10 013002Google Scholar

    [19]

    Klarsfeld S, Oteo J A 1989 Phys. Rev. A 39 3270Google Scholar

    [20]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

    [21]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [22]

    Pe'er A, Shapiro E A, Stowe M C, Shapiro M, Ye J 2007 Phys. Rev. Lett. 98 113004Google Scholar

    [23]

    Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C, Monroe C 2010 Phys. Rev. Lett. 104 140501Google Scholar

    [24]

    Wong-Campos J D, Moses S A, Johnson K G, Monroe C 2017 Phys. Rev. Lett. 119 230501Google Scholar

    [25]

    Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S, Monroe C 2013 Phys. Rev. Lett. 110 203001Google Scholar

    [26]

    Mizrahi J, Neyenhuis B, Johnson K G, Campbell W C, Senko C, Hayes D, Monroe C 2014 Appl. Phys. B 114 45

    [27]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information, 10th Anniversary Edition (New York: Cambridge University Press) pp189–193

    [28]

    Soderberg K A B and Monroe C 2010 Rep. Prog. Phys. 73 036401Google Scholar

    [29]

    Figgatt C, Ostrander A, Linke N M, Landsman K A, Zhu D W, Maslov D, Monroe C 2019 Nature 572 368Google Scholar

    [30]

    Lu Y, Zhang S N, Zhang K, Chen W T, Shen Y C, Zhang J L, Zhang J N, Kim K 2019 Nature 572 363Google Scholar

    [31]

    Choi T, Debnath S, Manning T A, Figgatt C, Gong Z X, Duan L M, Monroe C 2014 Phys. Rev. Lett. 112 190502Google Scholar

    [32]

    Zhu S L, Monroe C, Duan L M 2006 Europhys. Lett. 73 485Google Scholar

    [33]

    Green T J, Biercuk M J 2015 Phys. Rev. Lett. 114 120502Google Scholar

    [34]

    Schäfer V M, Ballance C J, Thirumalai K, Stephenson L J, Ballance T G, Steane A M, Lucas D M 2018 Nature 555 75Google Scholar

    [35]

    Hussain M I, Heinrich D, Guevara-Bertsch M, Torrontegui E, García-Ripoll J J, Roos C F, Blatt R 2021 Phys. Rev. Appl. 15 024054Google Scholar

    [36]

    Ratcliffe A K, Oberg L M, Hope J J 2020 Phys. Rev. A 101 052332Google Scholar

    [37]

    Mehdi Z, Ratcliffe A K, Hope J J 2021 Phys. Rev. Res. 3 013026Google Scholar

    [38]

    Campbell W C, Mizrahi J, Quraishi Q, Senko C, Hayes D, Hucul D, Matsukevich D N, Maunz P, Monroe C 2010 Phys. Rev. Lett. 105 090502Google Scholar

    [39]

    Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63Google Scholar

    [40]

    Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, Yao N Y 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [41]

    Moehring D L, Blinov B B, Gidley D W, Kohn R N, J r., Madsen M J, Sanderson T D, Vallery R S, Monroe C 2006 Phys. Rev. A 73 023413Google Scholar

    [42]

    Blinov B B, Kohn R N, J r., Madsen M J, Maunz P, Moehring D L, Monroe C 2006 J. Opt. Soc. Am. B 23 1170Google Scholar

    [43]

    Madsen M J, Moehring D L, Maunz P, Kohn R N, Jr., Duan L M, Monroe C 2006 Phys. Rev. Lett. 97 040505Google Scholar

    [44]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 1Google Scholar

    [45]

    Gardiner S A, Cirac J I, Zoller P 1997 Phys. Rev. Lett. 79 4790Google Scholar

  • 图 1  两离子在阱中的振动模式 (a) 质心模; (b) 呼吸模

    Figure 1.  Vibration modes of two ions in trap: (a) Center of mass mode; (b) relative motion mode.

    图 2  5个离子径向模式和轴向模式的本征频率 (a) 径向模式的本征频率以及本征模向量, $b_m(m=1—5)$表示了5个离子远离平衡位置$x_0$的大小, $\delta$是执行受激拉曼跃迁过程中设置的失谐; (b) 模拟计算的径向模式和轴向模式的本征频率谱

    Figure 2.  Eigenfrequencies of the transverse and axial modes of the 5 ions in trap: (a) Eigenfrequencies of transverse modes and eigenmode vectors, $b_m(m=1-5)$ represents the size of the 5 ions away from the equilibrium position $x_0$, $\delta$ is the detuning in stimulated Raman transition; (b) simulated eigenfrequency spectra of transverse and axial modes.

    图 3  $^ {171}{\rm{Yb}}^{+}$中受激拉曼跃迁示意图 ( $\omega_1$$\omega_2$分别为两束激光的频率; $\varDelta$为两束激光在$^ {2}{\rm{P}}_{1/2}$能级处的失谐)

    Figure 3.  The stimulated Raman transition of $^ {171}{\rm{Yb}}^{+}$($\omega_1$ and $\omega_2$ are the frequencies of the two laser beams; $\varDelta$ is the detuning of the two laser beams at the $^ {2}{\rm{P}}_{1/2}$ energy level).

    图 4  边带跃迁和边带冷却示意图 (a) 载波(黑)、红边带(红)和蓝边带(蓝)跃迁; (b) $^{171}{\rm{Yb}}^+$红边带冷却示意图

    Figure 4.  Schematic diagram of sideband transition and sideband cooling: (a) Carrier (black arrow), red sideband (red arrow) and blue sideband (blue arrow) transitions; (b) red sideband cooling of $^{171}{\rm{Yb}}^+$.

    图 5  Mølmer-Sørensen门能级跃迁示意图, 其中$\omega_{\rm{b}}$, $\omega_{\rm{r}}$分别为蓝边带和红边带的频率, 红色箭头和蓝色箭头分别为红边带跃迁和蓝边带跃迁. $\nu$为声子频率, $\delta$为红、蓝边带处的小失谐

    Figure 5.  The energy level transition in Mølmer-Sørensen gate. $\omega_{\rm{b}}$ and $\omega_{\rm{r}}$ are frequencies of blue sideband and red sideband respectively, and blue arrow and red arrow are blue sideband transition and red sideband transition respectively; $\nu$ is the phonon frequency, and $\delta$ is the small detuning of each sideband.

    图 6  自旋依赖的动量转移 (a) 不同自旋状态在相空间被转移的方向不同, 红色圆代表$ \left| \uparrow \right\rangle $态, 蓝色圆代表$ \left| \downarrow \right\rangle $态; (b) 超快脉冲序列照射离子产生自旋依赖的动量转移

    Figure 6.  Spin-dependent momentum transfer: (a) Different spin states are transferred in different directions in phase space, red circle represents $ \left| \uparrow \right\rangle $ state and blue circle represents $ \left| \downarrow \right\rangle $ state; (b) ultrafast pulse trains irradiate ions and produce spin-dependent momentum transfer.

    图 7  脉冲激光线宽覆盖若干个本征频率的示意图

    Figure 7.  Schematic of laser linewidth covering several eigenfrequencies.

    图 8  门时间为$200 \ \mu{\rm{s}}$, 失谐$\delta$为3.0318 MHz时脉冲幅度调制模拟结果

    Figure 8.  Simulation result of laser amplitude modulation when gate time is $200 \; \mu{\rm{s}}$ and detuning $\delta$ is 3.0318 MHz.

    图 9  5个振动模式的运动态在相空间内的运动轨迹 (a)线频率为3.058 MHz的模式1; (b) 线频率为3.047 MHz的模式2; (c) 线频率为3.0209 MHz的模式3; (d) 线频率为2.9936 MHz的模式4; (e) 线频率为2.9611 MHz的模式5

    Figure 9.  The motional state trajectories of the five vibration modes in phase space: (a) Mode 1, line frequency is 3.058 MHz; (b) Mode 2, line frequency is 3.047 MHz; (c) Mode 3, line frequency is 3.0209 MHz; (d) Mode 4, line frequency is 2.9936 MHz; (e) Mode 5, line frequency is 2.9611 MHz.

    图 10  两个运动模式在脉冲序列的作用下与自旋解耦 (a) 超快脉冲序列; (b) 两个运动模式在相空间的运动轨迹

    Figure 10.  Two motional modes are decoupled from spin: (a) Ultrafast pulse train; (b) trajectories of two motion modes in phase space.

    表 1  离子链上的离子位置

    Table 1.  Ion position on the ion chain.

    离子序数12345
    位置/$\mu {\rm{m}}$–10.52–4.9604.9610.52
    DownLoad: CSV
  • [1]

    Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J, Blatt R 2003 Nature 422 408Google Scholar

    [2]

    Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J, Monroe C 2000 Nature 404 256Google Scholar

    [3]

    Marquet C, Schmidt-Kaler F, James D F V 2003 Appl. Phys. B 76 199Google Scholar

    [4]

    James D F V 1998 Appl. Phys. B: Lasers Opt. 66 181Google Scholar

    [5]

    Zhu S L, Monroe C, Duan L M 2006 Phys. Rev. Lett. 97 050505Google Scholar

    [6]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [7]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259Google Scholar

    [8]

    Meekhof D M, Leibfried D, Monroe C, King B E, Itano W M, Wineland D J 1997 Brazilian J. Phys. 27 15

    [9]

    Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403Google Scholar

    [10]

    Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J, Gould P 1995 Phys. Rev. Lett. 75 4011Google Scholar

    [11]

    King B E, Wood C S, Myatt C J, Turchette Q A, Leibfried D, Itano W M, Monroe C, Wineland D J 1998 Phys. Rev. Lett. 81 1525Google Scholar

    [12]

    Mølmer K, Sørensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [13]

    Sørensen A, Mølmer K 1999 Phys. Rev. Lett. 82 1971Google Scholar

    [14]

    Kim K, Chang M S, Islam R, Korenblit S, Duan L M, Monroe C 2009 Phys. Rev. Lett. 103 120502Google Scholar

    [15]

    Leung P H, Landsman K A, Figgatt C, Linke N M, Monroe C, Brown K R 2018 Phys. Rev. Lett. 120 020501Google Scholar

    [16]

    Landsman K A, Wu Y K, Leung P H, Zhu D W, Linke N M, Brown K R, Duan L M, Monroe C 2019 Phys. Rev. A 100 022332Google Scholar

    [17]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nat. Phys. 4 463Google Scholar

    [18]

    Roos C F 2008 New J. Phys. 10 013002Google Scholar

    [19]

    Klarsfeld S, Oteo J A 1989 Phys. Rev. A 39 3270Google Scholar

    [20]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325Google Scholar

    [21]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [22]

    Pe'er A, Shapiro E A, Stowe M C, Shapiro M, Ye J 2007 Phys. Rev. Lett. 98 113004Google Scholar

    [23]

    Hayes D, Matsukevich D N, Maunz P, Hucul D, Quraishi Q, Olmschenk S, Campbell W, Mizrahi J, Senko C, Monroe C 2010 Phys. Rev. Lett. 104 140501Google Scholar

    [24]

    Wong-Campos J D, Moses S A, Johnson K G, Monroe C 2017 Phys. Rev. Lett. 119 230501Google Scholar

    [25]

    Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S, Monroe C 2013 Phys. Rev. Lett. 110 203001Google Scholar

    [26]

    Mizrahi J, Neyenhuis B, Johnson K G, Campbell W C, Senko C, Hayes D, Monroe C 2014 Appl. Phys. B 114 45

    [27]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information, 10th Anniversary Edition (New York: Cambridge University Press) pp189–193

    [28]

    Soderberg K A B and Monroe C 2010 Rep. Prog. Phys. 73 036401Google Scholar

    [29]

    Figgatt C, Ostrander A, Linke N M, Landsman K A, Zhu D W, Maslov D, Monroe C 2019 Nature 572 368Google Scholar

    [30]

    Lu Y, Zhang S N, Zhang K, Chen W T, Shen Y C, Zhang J L, Zhang J N, Kim K 2019 Nature 572 363Google Scholar

    [31]

    Choi T, Debnath S, Manning T A, Figgatt C, Gong Z X, Duan L M, Monroe C 2014 Phys. Rev. Lett. 112 190502Google Scholar

    [32]

    Zhu S L, Monroe C, Duan L M 2006 Europhys. Lett. 73 485Google Scholar

    [33]

    Green T J, Biercuk M J 2015 Phys. Rev. Lett. 114 120502Google Scholar

    [34]

    Schäfer V M, Ballance C J, Thirumalai K, Stephenson L J, Ballance T G, Steane A M, Lucas D M 2018 Nature 555 75Google Scholar

    [35]

    Hussain M I, Heinrich D, Guevara-Bertsch M, Torrontegui E, García-Ripoll J J, Roos C F, Blatt R 2021 Phys. Rev. Appl. 15 024054Google Scholar

    [36]

    Ratcliffe A K, Oberg L M, Hope J J 2020 Phys. Rev. A 101 052332Google Scholar

    [37]

    Mehdi Z, Ratcliffe A K, Hope J J 2021 Phys. Rev. Res. 3 013026Google Scholar

    [38]

    Campbell W C, Mizrahi J, Quraishi Q, Senko C, Hayes D, Hucul D, Matsukevich D N, Maunz P, Monroe C 2010 Phys. Rev. Lett. 105 090502Google Scholar

    [39]

    Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63Google Scholar

    [40]

    Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, Yao N Y 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [41]

    Moehring D L, Blinov B B, Gidley D W, Kohn R N, J r., Madsen M J, Sanderson T D, Vallery R S, Monroe C 2006 Phys. Rev. A 73 023413Google Scholar

    [42]

    Blinov B B, Kohn R N, J r., Madsen M J, Maunz P, Moehring D L, Monroe C 2006 J. Opt. Soc. Am. B 23 1170Google Scholar

    [43]

    Madsen M J, Moehring D L, Maunz P, Kohn R N, Jr., Duan L M, Monroe C 2006 Phys. Rev. Lett. 97 040505Google Scholar

    [44]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 1Google Scholar

    [45]

    Gardiner S A, Cirac J I, Zoller P 1997 Phys. Rev. Lett. 79 4790Google Scholar

  • [1] Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] Li Ting-Wei, Rong Xing, Du Jiang-Feng. Recent progress of quantum control in solid-state single-spin systems. Acta Physica Sinica, 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [4] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [5] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [6] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] Zhang Qian, Li Meng, Gong Qi-Huang, Li Yan. Femtosecond laser direct writing of optical quantum logic gates. Acta Physica Sinica, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [8] Wang Can-Can. Quantum entanglement and cosmological Friedmann equations. Acta Physica Sinica, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [9] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [10] An Zhi-Yun, Li Zhi-Jian. Properties of distribution and entanglement in discrete-time quantum walk with percolation. Acta Physica Sinica, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [11] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [12] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [13] Gou Li-Dan, Wang Xiao-Qian. Properties of quantum correlations in the Yang-Baxter spin-1/2 chain mode. Acta Physica Sinica, 2015, 64(7): 070302. doi: 10.7498/aps.64.070302
    [14] Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [17] Chen Yu, Zou Jian, Li Jun-Gang, Shao Bin. Controlling the entanglement among three atoms by quantum-jump-based feedback. Acta Physica Sinica, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [18] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  7704
  • PDF Downloads:  342
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2022
  • Accepted Date:  29 March 2022
  • Available Online:  17 April 2022
  • Published Online:  20 April 2022

/

返回文章
返回