Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer

Wang En-long Wang Guo-chao Zhu Ling-Xiao Bian Jin-Tian Mo Xiao-Juan Kong Hui

Citation:

Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer

Wang En-long, Wang Guo-chao, Zhu Ling-Xiao, Bian Jin-Tian, Mo Xiao-Juan, Kong Hui
PDF
Get Citation
  • Quantum nondemolition (QND) measurement aided by high-finesse optical cavities is an important method for generating high-gain spin or momentum squeezed states, which can enhance the sensitivity of atom interferometers to surpass the standard quantum limit. Conventional two-mirror Fabry-Perot cavities have the drawback of a standing wave pattern, leading to inhomogeneous atom-light coupling and subsequent degradation of squeezing enhancement. In this study, we present a novel method for achieving homogeneous quantum nondemolition measurement using an optical ring cavity to generate momentum squeezed states in atom interferometers. We designed and demonstrated a high-finesse (F =2.4(1)×104), high-vacuum compatible (1×10-10 mbar) optical ring cavity that utilizes the properties of traveling wave fields to address the issue of inhomogeneous atom-light interaction. A strontium cold atomic ensemble was prepared and coupled into the cavity mode; the dispersive cavity phase shift caused by the atoms passing through was extracted through differential Pound-Drever-Hall measurement, enabling nondemolition measurement of the atom number. Experimental results indicate that, under a probe laser power of 20 µW, the dispersive phase shift of the ring cavity was measured to be 40 mrad. The effective number of atoms coupled into the cavity mode is around 1×106. Verification of the consistency between the ring cavity dispersive phase shift and QND measurement theory was achieved by adjusting parameters such as matching the atomic position with the cavity mode and tuning the frequency of the probe laser. The optical ring cavity developed in this study provides a significant approach for generating spin or momentum squeezed states in atom interferometers, thus holding promise for enhancing their sensitivity and is expected to find wide applications in cavity-enhanced quantum precision measurements.
  • [1]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90035005

    [2]

    Lu B, Han C Y, Zhuang M, Ke Y G, Huang J H, Lee C H 2019 Acta Phys. Sin. 68040306(in Chinses) [鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红2019物理学报68040306]

    [3]

    Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104250801

    [4]

    Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529505

    [5]

    Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y, Vuletić V 2020 Nature 588414

    [6]

    Eckner W J, Darkwah Oppong N, Cao A, Young A W, Milner W R, Robinson J M, Ye J, Kaufman A M 2023 Nature 621734

    [7]

    Greve G P, Luo C, Wu B, Thompson J K 2022 Nature 610472

    [8]

    Huang X Y, Xiang Y, Sun F X, He Q Y, Gong Q H 2015 Acta Phys. Sin. 64160304(in Chinses) [黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌2015物理学报64160304]

    [9]

    Bao H, Duan J, Jin S, Lu X, Li P, Qu W, Wang M, Novikova I, Mikhailov E E, Zhao K F, Mølmer K, Shen H, Xiao Y 2020 Nature 581159

    [10]

    Bornet G, Emperauger G, Chen C, Ye B, Block M, Bintz M, Boyd J A, Barredo D, Comparin T, Mezzacapo F, Roscilde T, Lahaye T, Yao N Y, Browaeys A 2023 Nature 621728

    [11]

    Malia B K, Wu Y, Martínez-Rincón J, Kasevich M A 2022 Nature 612661

    [12]

    Wang E L, Wang G C, Zhu L X, Bian J T, Wang X, Kong H 2024 Laser Optoelectron. Prog. 61050001(in Chinses) [王恩龙, 王国超, 朱凌晓, 卞进田, 王玺, 孔辉2024激光与光电子学进展61050001]

    [13]

    Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 5067

    [14]

    Louchet-Chauvet A, Appel J, Renema J J, Oblak D, Kjaergaard N, Polzik E S 2010 New J. Phys. 12065032

    [15]

    Bowden W, Vianello A, Hill I R, Schioppo M, Hobson R 2020 Phys. Rev. X 10041052

    [16]

    Muniz J A, Young D J, Cline J R, Thompson J K 2021 Phys. Rev. Res. 3023152

    [17]

    Cox K C, Greve G P, Wu B, Thompson J K 2016 Phys. Rev. A 94061601

    [18]

    Salvi L, Poli N, Vuletić V, Tino G M 2018 Phys. Rev. Lett. 120033601

    [19]

    Tino G M 2021 Quantum Sci. Technol. 6024014

    [20]

    Cox K C, Meyer D H, Schine N A, Fatemi F K, Kunz P D 2018 J. Phys. B: At. Mol. Opt. Phys. 51195002

    [21]

    Kawasaki A, Braverman B, Pedrozo-Peñafiel E, Shu C, Colombo S, Li Z, Özel Ö, Chen W, Salvi L, Heinz A, Levonian D, Akamatsu D, Xiao Y, Vuletić V 2019 Phys. Rev. A 99013437

    [22]

    Braverman B, Kawasaki A, Pedrozo-Peñafiel E, Colombo S, Shu C, Li Z, Mendez E, Yamoah M, Salvi L, Akamatsu D, Xiao Y, Vuletić V 2019 Phys. Rev. Lett. 122223203

    [23]

    Chen Y T, Szurek M, Hu B, de Hond J, Braverman B, Vuletić V 2022 Opt. Express 3037426

    [24]

    Manzoor S, Tinsley J N, Bandarupally S, Chiarotti M, Poli N 2022 Opt. Lett. 472582

    [25]

    Heinz A, Trautmann J, Šantić N, Park A J, Bloch I, Blatt S 2021 Opt. Lett. 46250

    [26]

    Zhang L, Wu M, Gao J, Liu J, Fan L, Jiao D, Xu G, Dong R, Liu T, Zhang S 2023 Appl. Phys. B 129149

    [27]

    Jiang H F 2018 Acta Phys. Sin. 67160602(in Chinses) [姜海峰2018物理学报67160602]

    [28]

    Bowden W, Hobson R, Hill I R, Vianello A, Schioppo M, Silva A, Margolis H S, Baird P E, Gill P 2019 Sci. Rep. 911704

    [29]

    Bernon S, Vanderbruggen T, Kohlhaas R, Bertoldi A, Landragin A, Bouyer P 2011 New J. Phys. 13065021

    [30]

    Chen Z, Bohnet J G, Weiner J M, Cox K C, Thompson J K 2014 Phys. Rev. A 89043837

    [31]

    Tanji-Suzuki H, Leroux I D, Schleier-Smith M H, Cetina M, Grier A T, Simon J, Vuletić V 2011 In Advances In Atomic, Molecular, and Optical Physics, vol. 60(Elsevier), pp 201–237

    [32]

    Kogelnik H, Li T 1966 Appl. Opt. 51550

    [33]

    Carstens H, Holzberger S, Kaster J, Weitenberg J, Pervak V, Apolonski A, Fill E, Krausz F, Pupeza I 2013 Opt. Express 2111606

    [34]

    Black E D 2001 Am. J. Phys. 6979

    [35]

    Wang E, Verma G, Tinsley J N, Poli N, Salvi L 2021 Phys. Rev. A 103022609

    [36]

    Sun Y L, Ye Y X, Shi X H, Wang Z Y, Yan C J, He L L, Lu Z H, Zhang J 2019 Class. Quantum Gravity 36105007

    [37]

    Serra E, Borrielli A, Cataliotti F S, Marin F, Marino F, Pontin A, Prodi G A, Bonaldi M 2012 Phys. Rev. A 86051801

    [38]

    Verma G, Wang E, Assendelft J, Poli N, Rosi G, Tino G M, Salvi L 2022 Appl. Phys. B 1281

    [39]

    Han J X, Lu B Q, Yin M J, Wang Y B, Xu Q F, Lu X T, Chang H 2019 Chin. Phys. B 28013701

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, doi: 10.7498/aps.73.20240174
    [2] Ye Liu-Xian, Xu Yun-Peng, Wang Qiao-Wei, Cheng Bing, Wu Bin, Wang He-Lin, Lin Qiang. Optimization and control of cold atom interference phase shift based on laser double-sideband suppression. Acta Physica Sinica, doi: 10.7498/aps.72.20221711
    [3] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. A coefficient searching based vibration correction method. Acta Physica Sinica, doi: 10.7498/aps.71.20220037
    [4] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20220267
    [5] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20220113
    [6] Ma Teng-Fei, Wang Min-Jie, Wang Sheng-Zhi, Jiao Hao-Le, Xie Yan, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai. Experimental study of retrieval efficiency of Duan-Lukin-Cirac-Zoller quantum memory by optical cavity-enhanced. Acta Physica Sinica, doi: 10.7498/aps.71.20210881
    [7] Experimental Study on Retrieval efficiency of Duan-Lukin-Cirac-Zoller Quantum Memory by Optical Cavity-Enhanced. Acta Physica Sinica, doi: 10.7498/aps.70.20210881
    [8] Dai Yu-Fei, Chen Yao-Tong, Wang Lan, Yin Kai, Zhang Yan. Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system. Acta Physica Sinica, doi: 10.7498/aps.69.20200184
    [9] Zhou Jing, Wang Ming, Ni Hai-Bin, Ma Xin. Finite difference time domain simulation of optical properties of annular cavity arrays. Acta Physica Sinica, doi: 10.7498/aps.64.227301
    [10] Huang Xin-Yao, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi, Gong Qi-Huang. Planar quantum squeezing and atom interferometry. Acta Physica Sinica, doi: 10.7498/aps.64.160304
    [11] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, doi: 10.7498/aps.63.170302
    [12] Li Yue-Ke, Zhang Gui-Ming, Gao Yun-Feng. Quantum interference in the cavity field spectra of nondegenerate two-photon Jaynes-Cummings model. Acta Physica Sinica, doi: 10.7498/aps.59.1786
    [13] Yan Dong, Song Li-Jun, Chen Dian-Wei. Spin squeezing of two-component Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.58.3679
    [14] Yao Chun-Mei, Guo Guang-Can. . Acta Physica Sinica, doi: 10.7498/aps.50.59
    [15] Song Ke-Hui, Guo Guang-Can. . Acta Physica Sinica, doi: 10.7498/aps.49.231
    [16] WANG DAN-LING, GONG QI-HUANG, WANG KAI-GE, YANG GUO-JIAN. QUANTUM NONDEMOLITION MEASUREMENTS IN DEGENERATE OPTICAL PARAMETRIC OSCILLATOR. Acta Physica Sinica, doi: 10.7498/aps.49.1484
    [17] ZHANG JUN-XIANG, HE LING-XIANG, ZHANG TIAN-CAI, XIE CHANG-DE, PENG KUN-CHI. THE FOURTH-ORDER INTERFERENCE BETWEEN TWO INDEPENDENT SQUEEZED FIELDS. Acta Physica Sinica, doi: 10.7498/aps.48.1230
    [18] WANG KAI-GE, XU QIU-SHENG, YANG GUO-JIAN. QUANTUM NON-DEMOLITION MEASUREMENT IN NONLINEAR DOUBLE-RESONANCE FOR TWO BEAMS. Acta Physica Sinica, doi: 10.7498/aps.47.1641
    [19] Xue Qiu-Han, Guo Guang-Can. . Acta Physica Sinica, doi: 10.7498/aps.44.1410
    [20] S. SACHUIF, HU GANG. THE ATOM SQUEEZING EFFECT FOR OFF-RESONANT TWO-PHOTON OPTICAL BISTABILITY IN BAD-CAVITY CASE. Acta Physica Sinica, doi: 10.7498/aps.41.578
Metrics
  • Abstract views:  17
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  19 December 2024

/

返回文章
返回