-
Quantum nondemolition (QND) measurement aided by high-finesse optical cavities is an important method for generating high-gain spin or momentum squeezed states, which can enhance the sensitivity of atom interferometers to surpass the standard quantum limit. Conventional two-mirror Fabry-Perot cavities have the drawback of a standing wave pattern, leading to inhomogeneous atom-light coupling and subsequent degradation of squeezing enhancement. In this study, we present a novel method for achieving homogeneous quantum nondemolition measurement using an optical ring cavity to generate momentum squeezed states in atom interferometers. We designed and demonstrated a high-finesse (F =2.4(1)×104), high-vacuum compatible (1×10-10 mbar) optical ring cavity that utilizes the properties of traveling wave fields to address the issue of inhomogeneous atom-light interaction. A strontium cold atomic ensemble was prepared and coupled into the cavity mode; the dispersive cavity phase shift caused by the atoms passing through was extracted through differential Pound-Drever-Hall measurement, enabling nondemolition measurement of the atom number. Experimental results indicate that, under a probe laser power of 20 µW, the dispersive phase shift of the ring cavity was measured to be 40 mrad. The effective number of atoms coupled into the cavity mode is around 1×106. Verification of the consistency between the ring cavity dispersive phase shift and QND measurement theory was achieved by adjusting parameters such as matching the atomic position with the cavity mode and tuning the frequency of the probe laser. The optical ring cavity developed in this study provides a significant approach for generating spin or momentum squeezed states in atom interferometers, thus holding promise for enhancing their sensitivity and is expected to find wide applications in cavity-enhanced quantum precision measurements.
-
Keywords:
- Optical ring cavity /
- quantum nondemolition measurement /
- spin squeezing /
- atom interferometer
-
[1] Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90035005
[2] Lu B, Han C Y, Zhuang M, Ke Y G, Huang J H, Lee C H 2019 Acta Phys. Sin. 68040306(in Chinses) [鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红2019物理学报68040306]
[3] Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104250801
[4] Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529505
[5] Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y, Vuletić V 2020 Nature 588414
[6] Eckner W J, Darkwah Oppong N, Cao A, Young A W, Milner W R, Robinson J M, Ye J, Kaufman A M 2023 Nature 621734
[7] Greve G P, Luo C, Wu B, Thompson J K 2022 Nature 610472
[8] Huang X Y, Xiang Y, Sun F X, He Q Y, Gong Q H 2015 Acta Phys. Sin. 64160304(in Chinses) [黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌2015物理学报64160304]
[9] Bao H, Duan J, Jin S, Lu X, Li P, Qu W, Wang M, Novikova I, Mikhailov E E, Zhao K F, Mølmer K, Shen H, Xiao Y 2020 Nature 581159
[10] Bornet G, Emperauger G, Chen C, Ye B, Block M, Bintz M, Boyd J A, Barredo D, Comparin T, Mezzacapo F, Roscilde T, Lahaye T, Yao N Y, Browaeys A 2023 Nature 621728
[11] Malia B K, Wu Y, Martínez-Rincón J, Kasevich M A 2022 Nature 612661
[12] Wang E L, Wang G C, Zhu L X, Bian J T, Wang X, Kong H 2024 Laser Optoelectron. Prog. 61050001(in Chinses) [王恩龙, 王国超, 朱凌晓, 卞进田, 王玺, 孔辉2024激光与光电子学进展61050001]
[13] Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 5067
[14] Louchet-Chauvet A, Appel J, Renema J J, Oblak D, Kjaergaard N, Polzik E S 2010 New J. Phys. 12065032
[15] Bowden W, Vianello A, Hill I R, Schioppo M, Hobson R 2020 Phys. Rev. X 10041052
[16] Muniz J A, Young D J, Cline J R, Thompson J K 2021 Phys. Rev. Res. 3023152
[17] Cox K C, Greve G P, Wu B, Thompson J K 2016 Phys. Rev. A 94061601
[18] Salvi L, Poli N, Vuletić V, Tino G M 2018 Phys. Rev. Lett. 120033601
[19] Tino G M 2021 Quantum Sci. Technol. 6024014
[20] Cox K C, Meyer D H, Schine N A, Fatemi F K, Kunz P D 2018 J. Phys. B: At. Mol. Opt. Phys. 51195002
[21] Kawasaki A, Braverman B, Pedrozo-Peñafiel E, Shu C, Colombo S, Li Z, Özel Ö, Chen W, Salvi L, Heinz A, Levonian D, Akamatsu D, Xiao Y, Vuletić V 2019 Phys. Rev. A 99013437
[22] Braverman B, Kawasaki A, Pedrozo-Peñafiel E, Colombo S, Shu C, Li Z, Mendez E, Yamoah M, Salvi L, Akamatsu D, Xiao Y, Vuletić V 2019 Phys. Rev. Lett. 122223203
[23] Chen Y T, Szurek M, Hu B, de Hond J, Braverman B, Vuletić V 2022 Opt. Express 3037426
[24] Manzoor S, Tinsley J N, Bandarupally S, Chiarotti M, Poli N 2022 Opt. Lett. 472582
[25] Heinz A, Trautmann J, Šantić N, Park A J, Bloch I, Blatt S 2021 Opt. Lett. 46250
[26] Zhang L, Wu M, Gao J, Liu J, Fan L, Jiao D, Xu G, Dong R, Liu T, Zhang S 2023 Appl. Phys. B 129149
[27] Jiang H F 2018 Acta Phys. Sin. 67160602(in Chinses) [姜海峰2018物理学报67160602]
[28] Bowden W, Hobson R, Hill I R, Vianello A, Schioppo M, Silva A, Margolis H S, Baird P E, Gill P 2019 Sci. Rep. 911704
[29] Bernon S, Vanderbruggen T, Kohlhaas R, Bertoldi A, Landragin A, Bouyer P 2011 New J. Phys. 13065021
[30] Chen Z, Bohnet J G, Weiner J M, Cox K C, Thompson J K 2014 Phys. Rev. A 89043837
[31] Tanji-Suzuki H, Leroux I D, Schleier-Smith M H, Cetina M, Grier A T, Simon J, Vuletić V 2011 In Advances In Atomic, Molecular, and Optical Physics, vol. 60(Elsevier), pp 201–237
[32] Kogelnik H, Li T 1966 Appl. Opt. 51550
[33] Carstens H, Holzberger S, Kaster J, Weitenberg J, Pervak V, Apolonski A, Fill E, Krausz F, Pupeza I 2013 Opt. Express 2111606
[34] Black E D 2001 Am. J. Phys. 6979
[35] Wang E, Verma G, Tinsley J N, Poli N, Salvi L 2021 Phys. Rev. A 103022609
[36] Sun Y L, Ye Y X, Shi X H, Wang Z Y, Yan C J, He L L, Lu Z H, Zhang J 2019 Class. Quantum Gravity 36105007
[37] Serra E, Borrielli A, Cataliotti F S, Marin F, Marino F, Pontin A, Prodi G A, Bonaldi M 2012 Phys. Rev. A 86051801
[38] Verma G, Wang E, Assendelft J, Poli N, Rosi G, Tino G M, Salvi L 2022 Appl. Phys. B 1281
[39] Han J X, Lu B Q, Yin M J, Wang Y B, Xu Q F, Lu X T, Chang H 2019 Chin. Phys. B 28013701
Metrics
- Abstract views: 17
- PDF Downloads: 1
- Cited By: 0