Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter

Che Hao Li An Fang Jie Ge Gui-Guo Gao Wei Zhang Ya Liu Chao Xu Jiang-Ning Chang Lu-Bin Huang Chun-Fu Gong Wen-Bin Li Dong-Yi Chen Xi Qin Fang-Jun

Citation:

Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter

Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun
PDF
HTML
Get Citation
  • Cold atom gravimeter is gradually developing towards miniaturization, dynamics and practicality. It is of great significance to apply it to deep and far sea absolute gravity measurement and underwater long navigation time and high-precision navigation. At present, most cold atom gravimeters are still in the state of laboratory static base or quasi-static base measurement, which is difficult to meet the gravity measurement needs in dynamic application scenarios. Therefore, the research on "static to dynamic" of cold atom interferometric gravity measurement is very urgent and key. In this paper, the basic principle of dynamic measurement is analyzed, the basic method of combined measurement of cold atom gravimeter and accelerometer is given, a set of absolute dynamic gravity measurement system based on cold atom gravimeter and inertial stabilization platform is built, and the ship-borne dynamic measurement experiment is carried out by using the combined measurement method of cold atom gravimeter and traditional accelerometer. Firstly, the continuous absolute gravity measurement for about 40 h is carried out in the laboratory static environment to preliminarily evaluate the performance of the cold atom gravimeter. The sensitivity is 447 µGal/$\sqrt {{\text{Hz}}} $, and the long-term stability can reach 2.7 µgal. On this basis, the ship-borne experiment is conducted, the survey ship sails on the lake at a speed of about 4.6 kn, and the ship-borne absolute dynamic gravity measurement is carried out by means of repeated survey lines. After evaluation, the internal coincidence accuracy of the four repeated survey lines is 2.272 mGal, and the external coincidence accuracy values of the four voyages are 2.331, 1.837, 3.988 and 2.589 mGal respectively. Finally, according to the experimental results, the possible problems are further analyzed and summarized. This experimental study provides preliminary verification and technical scheme reference for marine absolute dynamic gravity measurement.
      Corresponding author: Fang Jie, fangjie@apm.ac.cn ; Chen Xi, chenxi@wipm.ac.cn ; Qin Fang-Jun, haig2005@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42074010, 61873275) and the China Postdoctoral Science Foundation (Grant No. 2020M672453).
    [1]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [2]

    房丰洲, 顾春阳 2017 仪器仪表学报 38 081830

    Fang F Z, Gu C Y 2017 Chin. J. Sci. Instrum. 38 081830

    [3]

    李安, 车浩, 覃方君, 黄春福, 龚文斌 2021 海军工程大学学报 33 0601

    Li A, Che H, Qin F J, Huang C F, Gong W B 2021 J. Nav. Univ. Eng. 33 0601

    [4]

    Geiger R, Landragin A, Merlet S, Santos F P D 2020 AVS Quantum Sci. 2 024702Google Scholar

    [5]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [6]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [7]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [8]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [9]

    Zhang J Y, Chen L L, Cheng Y, Luo Q, Shu Y B, Duan X C, Zhou M K, Hu Z K 2020 Chin. Phys. B 29 093702Google Scholar

    [10]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [11]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [12]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [13]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [14]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [15]

    程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2022 物理学报 71 026701Google Scholar

    Cheng B, Chen P J, Zhou Y, Wang K N, Zhu D, Chu li, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2022 Acta Phys. Sin. 71 026701Google Scholar

    [16]

    Le Gouët J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [17]

    Cheinet P, Canuel B, Pereira D S F, Gauguet A, Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [18]

    Tang B, Zhou L, Xiong Z Y, Wang Jin, Zhan M S A 2014 Rev. Sci. Instrum. 85 123Google Scholar

    [19]

    Rakholia A V 2015 Ph. D. Dissertation (New Mexico: The University of New Mexico)

    [20]

    Merlet S, Le Gouët J, Bodart Q, Clairon A, Rouchon P 2009 Metrologia 46 87Google Scholar

    [21]

    罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强 2018 物理学报 67 020702Google Scholar

    Luo D Y, Cheng B, Zhou Y, Wu B, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 020702Google Scholar

    [22]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [23]

    Cheiney P, Barrett B, Templier S, Jolly O, Napolitano F 2019 IEEE International Symposium on Inertial Sensors and Systems(INERTIAL) Naples FL, USA, April 1–5, 2019 p1

    [24]

    Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586Google Scholar

  • 图 1  冷原子重力仪/加速度计组合测量原理示意图

    Figure 1.  Principal of combined measurement of cold atom gravimeter/accelerometer.

    图 2  实验装置及航迹 (a) 冷原子重力仪与dgShip型重力仪; (b) CG-5型重力仪; (c)实验测量船; (d)计划航线

    Figure 2.  Experimental device and route: (a) Cold atom gravimeter and dgShip gravimeter; (b) CG-5 gravimeter; (c) experimental measuring ship; (d) planned route.

    图 3  实验流程

    Figure 3.  Procedure of experiment.

    图 4  实验室静基座测量结果 (a) 重力测量值; (b) Allan方差

    Figure 4.  Laboratory static measurement: (a) Gravity measurements; (b) Allan variance.

    图 5  运动参数 (a) 航行轨迹; (b) 载体高度; (c) 航行速度; (d) 载体航向

    Figure 5.  Motion parameters: (a) Trajectory; (b) height; (c) velocity; (d) heading.

    图 6  绝对重力测量数据 (a) 原始数据; (b) 低通滤波后; (c) Eötvös校正后

    Figure 6.  Absolute gravimetry data: (a) Raw data; (b) low pass filtered; (c) Eötvös corrected.

    图 7  干涉条纹 (a) 补偿前条纹(正啁啾); (b) 补偿后条纹(正啁啾); (c) 补偿前条纹(负啁啾); (d) 补偿后条纹(负啁啾)

    Figure 7.  Interference fringes: (a) Before compensation(positive chirp); (b) after compensation (positive chirp); (c) before compensation(negative chirp); (d) after compensation(negative chirp).

    表 1  实验系统主要硬件设备及功能

    Table 1.  Main hardware equipment and functions of the experimental system.

    类别名称规格功能
    重力仪及
    配套装置
    冷原子重力仪1套绝对重力测量
    dgShip型重力仪1套高精度动态相对重力测量, 提供动态重力基准比对
    CG-5型重力仪1台高精度静态相对重力测量, 提供静态重力基准参考
    笔记本电脑1台冷原子重力仪数据采集与处理
    传统加速度计1支置于拉曼光反射镜下, 与冷原子重力仪进行组合测量
    惯性稳定平台
    及配套装置
    双轴惯性稳定平台1套提供稳定的水平基准和姿态信息, 保持冷原子重力仪系统稳定的垂直指向
    高精度惯性导航系统1套与GPS组合测量, 获取航行过程中的速度、位置、姿态等信息
    差分GPS装置1套获取载体位置信息, 与惯性稳定平台组合
    减振装置1套置于稳定平台底部, 减少稳定平台的振动
    电源系统1套为实验设备供电
    DownLoad: CSV
  • [1]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [2]

    房丰洲, 顾春阳 2017 仪器仪表学报 38 081830

    Fang F Z, Gu C Y 2017 Chin. J. Sci. Instrum. 38 081830

    [3]

    李安, 车浩, 覃方君, 黄春福, 龚文斌 2021 海军工程大学学报 33 0601

    Li A, Che H, Qin F J, Huang C F, Gong W B 2021 J. Nav. Univ. Eng. 33 0601

    [4]

    Geiger R, Landragin A, Merlet S, Santos F P D 2020 AVS Quantum Sci. 2 024702Google Scholar

    [5]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [6]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [7]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [8]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [9]

    Zhang J Y, Chen L L, Cheng Y, Luo Q, Shu Y B, Duan X C, Zhou M K, Hu Z K 2020 Chin. Phys. B 29 093702Google Scholar

    [10]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [11]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [12]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [13]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [14]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [15]

    程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2022 物理学报 71 026701Google Scholar

    Cheng B, Chen P J, Zhou Y, Wang K N, Zhu D, Chu li, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2022 Acta Phys. Sin. 71 026701Google Scholar

    [16]

    Le Gouët J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [17]

    Cheinet P, Canuel B, Pereira D S F, Gauguet A, Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [18]

    Tang B, Zhou L, Xiong Z Y, Wang Jin, Zhan M S A 2014 Rev. Sci. Instrum. 85 123Google Scholar

    [19]

    Rakholia A V 2015 Ph. D. Dissertation (New Mexico: The University of New Mexico)

    [20]

    Merlet S, Le Gouët J, Bodart Q, Clairon A, Rouchon P 2009 Metrologia 46 87Google Scholar

    [21]

    罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强 2018 物理学报 67 020702Google Scholar

    Luo D Y, Cheng B, Zhou Y, Wu B, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 020702Google Scholar

    [22]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [23]

    Cheiney P, Barrett B, Templier S, Jolly O, Napolitano F 2019 IEEE International Symposium on Inertial Sensors and Systems(INERTIAL) Naples FL, USA, April 1–5, 2019 p1

    [24]

    Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586Google Scholar

  • [1] Ye Liu-Xian, Xu Yun-Peng, Wang Qiao-Wei, Cheng Bing, Wu Bin, Wang He-Lin, Lin Qiang. Optimization and control of cold atom interference phase shift based on laser double-sideband suppression. Acta Physica Sinica, 2023, 72(2): 024204. doi: 10.7498/aps.72.20221711
    [2] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. A coefficient searching based vibration correction method. Acta Physica Sinica, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [3] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [4] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [6] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [7] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [8] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [9] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [10] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] Luo Dong-Yun, Cheng Bing, Zhou Yin, Wu Bin, Wang Xiao-Long, Lin Qiang. Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm. Acta Physica Sinica, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [12] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [13] Huang Xin-Yao, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi, Gong Qi-Huang. Planar quantum squeezing and atom interferometry. Acta Physica Sinica, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [14] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [15] Hu Hua, Wu Kang, Shen Lei, Li Gang, Wang Li-Jun. A new high precision absolute gravimeter. Acta Physica Sinica, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [16] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [17] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] XU XIN-YE, WANG YU-ZHU. THEORETICAL ANALYSES OF A DOPPLER TYPE ATOMIC INTERFEROMETER. Acta Physica Sinica, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
Metrics
  • Abstract views:  4442
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2022
  • Accepted Date:  20 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回