Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter

Wu Bin Cheng Bing Fu Zhi-Jie Zhu Dong Wu Li-Ming Wang Kai-Nan Wang He-Lin Wang Zhao-Ying Wang Xiao-Long Lin Qiang

Citation:

Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter

Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang
PDF
HTML
Get Citation
  • The technology of electro-optic modulation is one of the several methods of generating the Raman beams. The experimental system based on this method is simple and much easier to implement, and the environmental adaptability is strong as well. However, this kind of modulation technology will produce additional laser lines, which may affect the measurement accuracy of cold atom gravimeter. Based on a homemade transportable cold atom gravimeter, the influence of Raman sideband effect on the accuracy of cold atom gravimeter is investigated in this paper. We analyze in detail the relationship between Raman sideband effect and some experimental parameters, such as the height of Raman retro-reflection mirror, the time of free fall of the atoms, the detuning of Raman laser, etc. It is found that those parameters have a dominant influence on the measured gravity resulting from Raman sideband effect. Besides, it is also found that the gravity measurements will be sensitive again to some experimental parameters in the case of Raman sideband effect while these parameters are usually insensitive in case of laser system without sideband effect. Finally, we investigate the relationship between Raman sideband effect and Raman detuning, and presente a method of evaluating the gravity induced by Raman sideband effect. The experimental results in this paper can provide a reference for reducing the influence of Raman sideband effect on the accuracy evaluation of cold atomic gravimeter.
      Corresponding author: Cheng Bing, bingcheng@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFF0200206, 2017YFC0601602) and the National Natural Science Foundation of China (Grant Nos. 11604296, 61727821, 61478069, 61875175, 11404286)
    [1]

    Bouchendira R, Clade P, Guellati-Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001Google Scholar

    [5]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Graham P W, Hogan J M, Kasevich M A, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [9]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [10]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [11]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [12]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [13]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [14]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [15]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [16]

    Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)

    [17]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [18]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 13786

    [19]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [20]

    Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar

    [21]

    Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 7Google Scholar

    [22]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [23]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [24]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [25]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [26]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [27]

    Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar

    [28]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [29]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [30]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [31]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [32]

    Louchet Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Dos Santos F P 2011 New J. Phys. 13 065025Google Scholar

  • 图 1  拉曼光边带效应示意图

    Figure 1.  The schematic diagram of Raman sideband effect.

    图 2  有无拉曼边带效应对冷原子重力仪测量结果的影响

    Figure 2.  The influence of laser systems with and without sidebands on the measured results of cold atom gravimeter

    图 3  不同拉曼光反射镜位置重力测量值随$T$的变化. 实心三角形: zM = 41.50 cm的实验数据; 实心正方形: zM = 40.58 cm的实验数据

    Figure 3.  Measurements of the gravity changes as a function of $T$ at two different positions of Raman retro-reflection mirror. Red and green scatters are the experimental data of the position of 41.50 cm and 40.58 cm respectively.

    图 4  相同拉曼光反射镜位置下多次测量重力值随$T$的变化关系. 不同颜色代表不同天的测量数据

    Figure 4.  Measurements of the functions of gravity changes as different $T$ when the positions of Raman retro-reflection mirror are the same. Different colors denote the experimental data measured at different days.

    图 5  重力测量值随${t_0}$的变化关系

    Figure 5.  The measured gravity changes as a function of ${t_0}$.

    图 6  重力测量值随拉曼光失谐$\varDelta $的变化. 红圆点: 实验数据; 红线: 线性拟合曲线

    Figure 6.  The gravity variations with the changes of the detuning of Raman laser. Red dots: the experimental data; Red line: the linear fitted curve.

    图 7  重力测量值随拉曼共振峰位置的变化 (a) 有边带效应; (b) 无边带效应; 圆散点: 实验数据; 黑线: 线性拟合曲线

    Figure 7.  The gravity variations as a function of the positions of Raman resonant peak. (a) With sidebands effect; (b) without sidebands effect. Round scatters: the experimental data; Black line: the linear fitted curve.

    图 8  不同拉曼脉冲配置对重力测量的影响 (a)有边带效应情况; (b)无边带效应情况

    Figure 8.  The influence of different configurations of Raman pulses sequence on the measurement of gravity. (a) The case with sidebands effect; (b) the case without sidebands effect.

    图 9  不同拉曼光反射镜位置重力测量值随拉曼光失谐的变化. 红点和黑点分别是41.50 和40.58 cm两个竖直位置下的实验数据, 红色和黑色直线分别是其线性拟合曲线

    Figure 9.  Measurements of the gravity as a function of the detunings of Raman laser at the different positions of Raman retro-reflection mirror. red and black scatters are the experimental data for two different heights 41.50 cm and 40.58 cm respectively; Red and black lines are the corresponding fitted curves.

    图 10  不同t0下重力测量值随拉曼光大失谐Δ的变化. 黑圆点: t0 = 8 ms; 红三角: t0 = 11 ms; 蓝方块: t0 = 17 ms

    Figure 10.  The measured gravity as a function of the detunings of Raman laser with different t0. The black dots: t0 = 8 ms; The red triangle: t0 = 11 ms; the blue square: t0 = 17 ms.

  • [1]

    Bouchendira R, Clade P, Guellati-Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001Google Scholar

    [5]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Graham P W, Hogan J M, Kasevich M A, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [9]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [10]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [11]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [12]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [13]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [14]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [15]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [16]

    Mahadeswaraswamy C 2009 Ph. D. Dissertation (California: Stanford University)

    [17]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [18]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun. 7 13786

    [19]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [20]

    Becker D, Lachmann M D, Seidel S T, Ahlers H, Dinkelaker A N, Grosse J, Hellmig O, Muentinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Luedtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Laemmerzahl C, Peters A, Schleich W P, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel E M 2018 Nature 562 391Google Scholar

    [21]

    Elliott E R, Krutzik M C, Williams J R, Thompson R J, Aveline D C 2018 NPJ Microgravity 4 7Google Scholar

    [22]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [23]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [24]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [25]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [26]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [27]

    Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar

    [28]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [29]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [30]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [31]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [32]

    Louchet Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Dos Santos F P 2011 New J. Phys. 13 065025Google Scholar

  • [1] Wen Yi, Wu Kang, Wang Li-Jun. Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [2] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [3] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [4] Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211686
    [5] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [6] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [8] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] Liu Ji-Cai, Cheng Fei, Zhao Ya-Nan, Guo Fen-Fen. Atom-subjected optical dipole force exerted by femtosecond laser field. Acta Physica Sinica, 2019, 68(3): 033701. doi: 10.7498/aps.68.20182016
    [11] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] Wang Zhi-Hui, Tian Ya-Li, Li Gang, Zhang Tian-Cai. Generation and application of two-photon Raman laser for manipulation of internal state of Cs atom. Acta Physica Sinica, 2015, 64(18): 184209. doi: 10.7498/aps.64.184209
    [13] Lu Jun-Fa, Zhou Qi, Pan Xiao-Qing, Yin Jian-Ping. Theoretical and experimental study of a novel double-well optical dipole trap for two-species of cold atoms or molecules. Acta Physica Sinica, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [14] Lu Jun-Fa, Zhou Qi, Yin Jian-Ping, Ji Xian-Ming. A combinative triple-well optical trap for three-species cold atoms or molecules. Acta Physica Sinica, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [15] Lu Xiang-Dong, Li Tong-Bao, Ma Yan, Wang Li-Dong. Investigation of atom-optical properties of laser focused Cr atomic deposition. Acta Physica Sinica, 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [16] Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [17] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [18] Duan Zheng-Lu, Zhang Wei-Ping, Li Shi-Qun, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Propagation of matter waves through the joint between two atomic waveguides. Acta Physica Sinica, 2005, 54(12): 5622-5628. doi: 10.7498/aps.54.5622
    [19] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] Ji Xian-Ming, Yin Jian-Ping. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
Metrics
  • Abstract views:  9828
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2019
  • Accepted Date:  05 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回