-
Femtosecond streak camera is currently the only diagnostic device with a femtosecond time resolution. Scanning circuit with bilateral symmetrical output is an important part of femtosecond streak camera. To achieve better performance of the streak camera, high requirements are placed on the output of scanning circuit. Owing to the excellent feature of litter time jitter and fast response speed, a GaAs photoconductive semiconductor switch (PCSS) has become a core device in the scanning circuit. Investigating the positive and negative symmetric pulses with fast rising edgeof GaAs PCSS is of great significance to improving the time resolution of femtosecond streak camera. In this paper, a laser with a pulse width of 60 fs was used to trigger a GaAs PCSS with an electrode gap of 3.5 mm. Under different storage capacitors and bias voltages, the positive and negative symmetric pulses withthe fastest rise time of 149 ps and the highest voltage transmission efficiency of 92.9% were obtained. The test results meet the design requirements of streak camera to realize femtosecond time resolution. Through the comparative analysis of the experimental values, it is concluded that the storage capacitor can affect the efficiency and rise time of the output electrical pulse in the same trigger laser pulse. By calculating the multiplication rate of carriers in combination with the output electrical pulse waveform, it is concluded that the GaAs PCSS operates in linear mode. According to the working characteristics of the linear mode and the energy storage characteristics of the capacitor, the analysis indicates that, when the characteristics of the trigger laser pulse are the same, the transmission efficiency and rise time of the output electric pulse voltage increase with the increase in storage capacitor, which is consistent with the experimental results. This study has a certain guiding significance for the better application of GaAs PCSS in femtosecond streak camera, which also has a certain propelling effect on improving the time resolution of femtosecond streak camera.
-
Keywords:
- GaAs photoconductive semiconductor switch /
- positive and negative symmetric pulse /
- fast rising edge /
- energy storage capacitance
[1] Wang L N, Liu J L 2017 IEEE Trans. Plasma Sci. 45 3240Google Scholar
[2] Ma C, Yang L, Wang S Q, Ji Y, Zhang L, Shi W 2017 IEEE Trans. Power Electr. 32 4644Google Scholar
[3] Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. El. In. 22 1991Google Scholar
[4] Zhang L, Shi W, Cao J C, Wang S Q, Dong C G, Yang L 2019 IEEE Electr. Device Lett. 40 291Google Scholar
[5] Shi W, Fu Z L 2013 IEEE Electr. Device Lett. 34 93Google Scholar
[6] Gaudet J A, Skipper M C, Abdalla M D, Ahem S M. Romero S P, Mar A, Zutavem F J, Loubriel G M, O’Malley M W, Helgeson W D 2000 Intense Microwave Pulses VII Orlando, USA, April 24−28, 2000 p121
[7] Hu L, Su J C, Qiu R C, Fang X 2018 IEEE Trans. Electron Dev. 65 1308Google Scholar
[8] EI A S, De A A, Arnaud-Cormos D, Couderc V, Leveque P 2011 IEEE Photon. Technol. Lett. 23 673Google Scholar
[9] 施卫, 闫志巾 2015 物理学报 64 228702Google Scholar
Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702Google Scholar
[10] Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4−6, 2004 p123
[11] Larsson J, Chang Z, Judd E, Schuck P J, Falcone R W, Heimann P A, Padmore H A, Kapteyn H C, Bucksbaum P H, Murnane M M, Lee R W, Machacek A, Wark J S, Liu X, Shan B 1997 Opt. Lett. 22 1012Google Scholar
[12] Maksimchuk A, Kim M, Workman J, Korn G, Squier J, Du D, Umstadter D, Mourou G,Bouvier M 1996 Rev. Sci. Instrum. 67 697Google Scholar
[13] Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2003 Appl. Phys. Lett. 82 3553Google Scholar
[14] Shi W, Yang L, Hou L, Liu Z N, Xing Z Y 2019 Appl. Sci. 9 328Google Scholar
[15] Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339Google Scholar
[16] Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330Google Scholar
[17] Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2015Google Scholar
[18] Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106Google Scholar
[19] 桂淮濛, 施卫 2018 物理学报 67 184207Google Scholar
Gui H M, Shi W 2018 Acta Phys. Sin. 67 184207Google Scholar
[20] Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147Google Scholar
-
表 1 不同储能电容时输出电脉冲电压传输效率
Table 1. The voltage transmission efficiency of output waveformwith different energy storage capacitor.
电容容值/pF 传输效率/% ± 1.5 kV ± 1.7 kV ± 1.9 kV ± 2.0 kV 10 50.4 47.2 46.9 44.3 33 72.4 71.1 68.5 66.2 82 78.6 76.2 73.9 72.1 100 89.3 92.2 92.9 92.6 表 2 不同储能电容时输出电脉冲上升时间
Table 2. The rise time of output waveform with different energy storage capacitor.
电容容值/pF 上升时间/ps ± 1.5 kV ± 1.7 kV ± 1.9 kV ± 2.0 kV 10 158 159 163 149 33 174 169 175 174 82 189 198 180 190 100 380 385 352 377 -
[1] Wang L N, Liu J L 2017 IEEE Trans. Plasma Sci. 45 3240Google Scholar
[2] Ma C, Yang L, Wang S Q, Ji Y, Zhang L, Shi W 2017 IEEE Trans. Power Electr. 32 4644Google Scholar
[3] Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. El. In. 22 1991Google Scholar
[4] Zhang L, Shi W, Cao J C, Wang S Q, Dong C G, Yang L 2019 IEEE Electr. Device Lett. 40 291Google Scholar
[5] Shi W, Fu Z L 2013 IEEE Electr. Device Lett. 34 93Google Scholar
[6] Gaudet J A, Skipper M C, Abdalla M D, Ahem S M. Romero S P, Mar A, Zutavem F J, Loubriel G M, O’Malley M W, Helgeson W D 2000 Intense Microwave Pulses VII Orlando, USA, April 24−28, 2000 p121
[7] Hu L, Su J C, Qiu R C, Fang X 2018 IEEE Trans. Electron Dev. 65 1308Google Scholar
[8] EI A S, De A A, Arnaud-Cormos D, Couderc V, Leveque P 2011 IEEE Photon. Technol. Lett. 23 673Google Scholar
[9] 施卫, 闫志巾 2015 物理学报 64 228702Google Scholar
Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702Google Scholar
[10] Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4−6, 2004 p123
[11] Larsson J, Chang Z, Judd E, Schuck P J, Falcone R W, Heimann P A, Padmore H A, Kapteyn H C, Bucksbaum P H, Murnane M M, Lee R W, Machacek A, Wark J S, Liu X, Shan B 1997 Opt. Lett. 22 1012Google Scholar
[12] Maksimchuk A, Kim M, Workman J, Korn G, Squier J, Du D, Umstadter D, Mourou G,Bouvier M 1996 Rev. Sci. Instrum. 67 697Google Scholar
[13] Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2003 Appl. Phys. Lett. 82 3553Google Scholar
[14] Shi W, Yang L, Hou L, Liu Z N, Xing Z Y 2019 Appl. Sci. 9 328Google Scholar
[15] Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339Google Scholar
[16] Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330Google Scholar
[17] Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2015Google Scholar
[18] Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106Google Scholar
[19] 桂淮濛, 施卫 2018 物理学报 67 184207Google Scholar
Gui H M, Shi W 2018 Acta Phys. Sin. 67 184207Google Scholar
[20] Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147Google Scholar
Catalog
Metrics
- Abstract views: 7851
- PDF Downloads: 67
- Cited By: 0