Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atom-subjected optical dipole force exerted by femtosecond laser field

Liu Ji-Cai Cheng Fei Zhao Ya-Nan Guo Fen-Fen

Citation:

Atom-subjected optical dipole force exerted by femtosecond laser field

Liu Ji-Cai, Cheng Fei, Zhao Ya-Nan, Guo Fen-Fen
PDF
HTML
Get Citation
  • In 2011, Kumar et al. (2011 Phys. Rev. A 84 043402) studied the light force acting on a beam of neutral two-level atoms superimposed on a few-cycle-pulse Gaussian laser field under both resonant and off-resonant conditions by solving the optical Bloch equation beyond the rotating-wave approximation, and they found that under resonant condition the transverse component of the light force shows oscillatory behavior but vanishes when a time average is taken, and the time averaged longitudinal force is nonzero only when the Rabi frequency is smaller than the resonant frequency and vanishes when the Rabi frequency is equal to or larger than the resonant frequency. In this paper, we investigate further the strong nonlinear optical interaction between a two-level atomic system and a femtosecond Gaussian laser pulse by solving numerically the full-wave optical Bloch equations through using the predictor-corrector method. It is found that the light forces and the light potentials are sensitive to the value of the Rabi frequency and the detuning of the laser field. Under the resonant condition, the instant light forces induced by the femtosecond laser pulse change their signs as a function of time. The instant longitudinal light force changes its sign at twice the Rabi frequency, while the instant transverse light force changes its sign at twice the light carrier-wave frequency. However, none of the time-averaged light forces is zero, showing periodical oscillation characters as a function of Rabi frequency. Both of the time-averaged longitudinal and transverse light forces oscillate at the Rabi frequency corresponding to the pulse area of 2${\text{π}}$. The time-averaged transverse light force shows also a trend of enhancement with Rabi frequency increasing, and the time-averaged longitudinal light force shows also a saturation trend with the increase of the Rabi frequency. The optical potential depends strongly on the detuning. It changes gradually from repulsive potential to attractive potential when the detuning defined here changes from negative to positive detuning. When the field is nearly resonant, the optical potential then oscillates between repulsive and attractive potentials. Therefore, neutral atoms can be focused, defocused, trapped, splitted or steered by the femtosecond laser field with appropriate detuning and Rabi frequency.
      Corresponding author: Liu Ji-Cai, jicailiu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574082) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2018MS050).
    [1]

    Meystre P 2001 Atom Optics (New York: Springer) p1

    [2]

    印建平 2012 原子光学—基本概念、原理、技术及其应用 (上海: 上海交通大学出版社) p12

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Applications (Shanghai: Shanghai Jiao Tong University Press) p12 (in Chinese)

    [3]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [4]

    Hänsch T W, Schawlow A L 1975 Opt. Commun. 13 68Google Scholar

    [5]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [6]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [7]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [8]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [9]

    Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S, Greiner M 2015 Phys. Rev. Lett. 114 213002Google Scholar

    [10]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [11]

    王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) p101

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Beijing University Press) p101 (in Chinese)

    [12]

    Metcalf H 2017 Rev. Mod. Phys. 89 041001Google Scholar

    [13]

    van der Straten P, Metcalf H 2016 Atoms and Molecules Interacting with Light (Cambridge: Cambridge University Press) p1

    [14]

    Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar

    [15]

    Garbin V, Cojoc D, Ferrari E, Proietti R Z, Cabrini S, Fabrizio E D 2005 Jpn. J. Appl. Phys. 44 5773Google Scholar

    [16]

    Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009 Nature 461 1261Google Scholar

    [17]

    Kumar P, Sarma A K 2012 Phys. Rev. A 86 053414Google Scholar

    [18]

    Kumar P, Sarma A K 2014 Phys. Rev. A 89 033422Google Scholar

    [19]

    Cai X, Lin Q 2013 Eur. Phys. J. D 67 246Google Scholar

    [20]

    Allen L, Eberly J H 1987 Optical Resonance and Two-Level Atoms (New York: Dover Publications, Inc) p41

    [21]

    张琴, 金康, 唐远河, 屈光辉 2011 物理学报 60 053204

    Zhang Q, Jin K, Tang Y H, Qu G H 2011 Acta Phys. Sin. 60 053204 (in Chinese)

    [22]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [23]

    Xing J, Chen X, Zhu S, Zhang R 2003 Chin. Opt. Lett. 1 122

    [24]

    Kumar P, Sarma A K 2011 Phys. Rev. A 84 043402Google Scholar

    [25]

    Lembessis V E, Ellinas D 2005 J. Opt. B: Quant. Sem. Opt. 7 319

    [26]

    Liu B, Jin G, Sun R, He J, Wang J 2017 Opt. Express 25 15861Google Scholar

    [27]

    Han Y C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225401Google Scholar

    [28]

    Liu J C, Wang C K, Gel’mukhanov F 2007 Phys. Rev. A 76 043422Google Scholar

    [29]

    Cai X, Zheng J, Lin Q 2013 Phys. Rev. A 87 043401Google Scholar

    [30]

    Boyd R W 2010 Nonlinear Optics (Singapore: Elsevier Pte Ltd) p158

    [31]

    Liu J C, Guo F F, Zhao Y N, Li X Z 2018 Chin. Phys. B 27 104209Google Scholar

    [32]

    Liu J C, Zhang Y Q, Chen L 2014 J. Mod. Opt. 61 781Google Scholar

    [33]

    刘纪彩, 赵珂, 宋玉志, 王传奎 2006 物理学报 55 1803Google Scholar

    Liu J C, Zhao K, Song Y Z, Wang C K 2006 Acta Phys. Sin. 55 1803Google Scholar

    [34]

    Liu J C, Sun Y P, Wang C K, Ågren H, Gel’mukhanov F 2010 Phys. Rev. A 81 043412Google Scholar

    [35]

    Sun Y P, Liu J C, Wang C K, Ge’lmukhanov F 2010 Phys. Rev. A 81 013812Google Scholar

    [36]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [37]

    Sukhov S V 2018 J. Commun. Technol. Electr. 63 1137

    [38]

    Florin E L, Pralle A, Hörber J K, Stelzer E H K 1997 J. Stru. Bio. 119 202Google Scholar

    [39]

    Munday J N, Capasso F, Parsegian V A 2009 Nature 457 170Google Scholar

    [40]

    Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, Nori F 2016 Nat. Phys. 12 731Google Scholar

    [41]

    Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040Google Scholar

    [42]

    Guan D, Hang Z H, Marcet Z, Liu H, Kravchenko I I, Chan C T, Chan H B, Tong P 2016 Sci. Rep. 5 16216

    [43]

    Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O 2015 Opt. Lett. 40 5058Google Scholar

  • 图 1  不同峰值拉比频率$G_ {\rm{R}}^0$取值条件下, 在高斯光束束腰所在平面内$z = 0$, 距离光轴$r =$ 0.7071 ${\text{μ}}{\rm{m}}$处(a)原子横向光力${F_ {\rm{T}}}(t)$(实线)和纵向光力${F_ {\rm{L}}}(t)$(虚线)的时间分布情况, (b)粒子数反转$w(t)$的时间演化, 其中对应$G_ {\rm{R}}^0 = 0.1\omega $, $0.25\omega $, $0.5\omega $$\omega $, 在$r =$ 0.7071 ${\text{μ}}{\rm{m}}$位置处的脉冲面积分别为$A=0.913{\text{π}} $, $2.2825{\text{π}} $, $4.565{\text{π}} $$9.13{\text{π}}$; 光场的失谐量取值$\varDelta = 0$

    Figure 1.  (a) Temporal evolution of the transverse light force ${F_ {\rm{T}}}(t)$ (solid lines) and the longitudinal light forces ${F_ {\rm{L}}}(t)$ (dashed lines); (b) temporal evolution of the population inversion $w(t)$ for different values of the peak Rabi frequencies $G_ {\rm{R}}^0$ at $z = 0$, $r = $ 0.7071 ${\text{μ}}{\rm{m}}$. Pulse area $A$ at $z = 0$, $r = $ 0.7071 ${\text{μ}}{\rm{m}}$ equals respectively $0.913{\text{π}} $, $2.2825{\text{π}} $, $4.565{\text{π}} $ and $9.13{\text{π}}$ for the peak Rabi frequency of $G_ {\rm{R}}^0 = 0.1\omega $, $0.25\omega $, $0.5\omega $ and $\omega $. Field detuning $\varDelta = 0$.

    图 2  在高斯光束束腰所在平面内距离光轴$r = $0.7071 ${\text{μ}}{\rm{m}}$处, 原子所受纵向冲量${I_ {\rm{L}}}(r, z)$(正方形点缀曲线)与横向冲量${I_ {\rm{T}}}(r, z)$(圆形点缀曲线)随输入脉冲的峰值拉比频率$G_ {\rm{R}}^0 = {d_{10}}{E_0}/\hbar $取值的演化情况, 其中$G_{{\text{2π}}}^0$对应脉冲面积为$2{\text{π}}$时的电场峰值拉比频率, 失谐量取值$\varDelta = 0$

    Figure 2.  Evolution of the longitudinal impulse ${I_ {\rm{L}}}(r, z)$ (square-dotted curve) and the transverse impulse ${I_ {\rm{T}}}(r, z)$ (circle-dotted curve) as a function of the peak Rabi frequency $G_ {\rm{R}}^0 = {d_{10}}{E_0}/\hbar $ at $z = 0$, $r =$ 0.7071 ${\text{μ}}{\rm{m}}.$ $G_{2{\text{π}}}^0$ is the peak Rabi frequency when the area of the pulse equals $2{\text{π}}.$ Detuning $\varDelta = 0$.

    图 3  不同失谐量$\varDelta = {\omega _{10}} - \omega $取值情况下, 在光脉冲强度最强时刻, 束腰所在平面内光学势随径向距离$r$的分布情况(拉比频率$G_ {\rm{R}}^0 = 2.0{\omega _{10}}$)

    Figure 3.  Distribution of the optical potential as function of the transverse distance $r$ at the central time of the laser pulse with different detunings $\varDelta = {\omega _{10}} - \omega $ for $G_ {\rm{R}}^0 = 2.0{\omega _{10}}$, $z = 0$.

  • [1]

    Meystre P 2001 Atom Optics (New York: Springer) p1

    [2]

    印建平 2012 原子光学—基本概念、原理、技术及其应用 (上海: 上海交通大学出版社) p12

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Applications (Shanghai: Shanghai Jiao Tong University Press) p12 (in Chinese)

    [3]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [4]

    Hänsch T W, Schawlow A L 1975 Opt. Commun. 13 68Google Scholar

    [5]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [6]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [7]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [8]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [9]

    Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S, Greiner M 2015 Phys. Rev. Lett. 114 213002Google Scholar

    [10]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [11]

    王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) p101

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Beijing University Press) p101 (in Chinese)

    [12]

    Metcalf H 2017 Rev. Mod. Phys. 89 041001Google Scholar

    [13]

    van der Straten P, Metcalf H 2016 Atoms and Molecules Interacting with Light (Cambridge: Cambridge University Press) p1

    [14]

    Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar

    [15]

    Garbin V, Cojoc D, Ferrari E, Proietti R Z, Cabrini S, Fabrizio E D 2005 Jpn. J. Appl. Phys. 44 5773Google Scholar

    [16]

    Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009 Nature 461 1261Google Scholar

    [17]

    Kumar P, Sarma A K 2012 Phys. Rev. A 86 053414Google Scholar

    [18]

    Kumar P, Sarma A K 2014 Phys. Rev. A 89 033422Google Scholar

    [19]

    Cai X, Lin Q 2013 Eur. Phys. J. D 67 246Google Scholar

    [20]

    Allen L, Eberly J H 1987 Optical Resonance and Two-Level Atoms (New York: Dover Publications, Inc) p41

    [21]

    张琴, 金康, 唐远河, 屈光辉 2011 物理学报 60 053204

    Zhang Q, Jin K, Tang Y H, Qu G H 2011 Acta Phys. Sin. 60 053204 (in Chinese)

    [22]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [23]

    Xing J, Chen X, Zhu S, Zhang R 2003 Chin. Opt. Lett. 1 122

    [24]

    Kumar P, Sarma A K 2011 Phys. Rev. A 84 043402Google Scholar

    [25]

    Lembessis V E, Ellinas D 2005 J. Opt. B: Quant. Sem. Opt. 7 319

    [26]

    Liu B, Jin G, Sun R, He J, Wang J 2017 Opt. Express 25 15861Google Scholar

    [27]

    Han Y C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225401Google Scholar

    [28]

    Liu J C, Wang C K, Gel’mukhanov F 2007 Phys. Rev. A 76 043422Google Scholar

    [29]

    Cai X, Zheng J, Lin Q 2013 Phys. Rev. A 87 043401Google Scholar

    [30]

    Boyd R W 2010 Nonlinear Optics (Singapore: Elsevier Pte Ltd) p158

    [31]

    Liu J C, Guo F F, Zhao Y N, Li X Z 2018 Chin. Phys. B 27 104209Google Scholar

    [32]

    Liu J C, Zhang Y Q, Chen L 2014 J. Mod. Opt. 61 781Google Scholar

    [33]

    刘纪彩, 赵珂, 宋玉志, 王传奎 2006 物理学报 55 1803Google Scholar

    Liu J C, Zhao K, Song Y Z, Wang C K 2006 Acta Phys. Sin. 55 1803Google Scholar

    [34]

    Liu J C, Sun Y P, Wang C K, Ågren H, Gel’mukhanov F 2010 Phys. Rev. A 81 043412Google Scholar

    [35]

    Sun Y P, Liu J C, Wang C K, Ge’lmukhanov F 2010 Phys. Rev. A 81 013812Google Scholar

    [36]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [37]

    Sukhov S V 2018 J. Commun. Technol. Electr. 63 1137

    [38]

    Florin E L, Pralle A, Hörber J K, Stelzer E H K 1997 J. Stru. Bio. 119 202Google Scholar

    [39]

    Munday J N, Capasso F, Parsegian V A 2009 Nature 457 170Google Scholar

    [40]

    Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, Nori F 2016 Nat. Phys. 12 731Google Scholar

    [41]

    Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040Google Scholar

    [42]

    Guan D, Hang Z H, Marcet Z, Liu H, Kravchenko I I, Chan C T, Chan H B, Tong P 2016 Sci. Rep. 5 16216

    [43]

    Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O 2015 Opt. Lett. 40 5058Google Scholar

  • [1] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [2] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [3] Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng. Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field. Acta Physica Sinica, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [4] Shi Jian-Zhen, Xu Tian, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of no-diffraction hollow vertex beams with adjustable angular momentum by wave plate phase plates. Acta Physica Sinica, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [5] Zhou Qiao-Qiao, Shi Jian-Zhen, Ji Xian-Ming, Yin Jian-Ping. Study on the properties of vector beams generated by a curved wave plate in the strong-focusing regime. Acta Physica Sinica, 2015, 64(5): 053702. doi: 10.7498/aps.64.053702
    [6] Zhou Qi, Lu Jun-fa, Yin Jian-Ping. Theoretical and experimental study of a controllable double-dark-hollow beam. Acta Physica Sinica, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [7] Diao Wen-Ting, He Jun, Liu Bei, Wang Jie-Ying, Wang Jun-Min. Improving the single atom probability by using the blue-detuned laser-assisted-collisions between the cold atoms trapped in the for-off-resonance trap. Acta Physica Sinica, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [8] Chen Guo-Jun, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of the tunable vector ellipse hollow beam by using linearly polarized light beams. Acta Physica Sinica, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [9] Lu Jun-Fa, Zhou Qi, Pan Xiao-Qing, Yin Jian-Ping. Theoretical and experimental study of a novel double-well optical dipole trap for two-species of cold atoms or molecules. Acta Physica Sinica, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [10] Zhang Chun-Yan, Zhao Qing, Fu Li-Bin, Liu Jie. Anisotropic explosions of hydrogen clusters in intense femtosecond laser field. Acta Physica Sinica, 2012, 61(14): 143601. doi: 10.7498/aps.61.143601
    [11] Xu Shu-Wu, Zhou Qiao-Qiao, Gu Song-Bo, Ji Xian-Ming, Yin Jian-Ping. Generation of the three-dimensional array of optical trap by spatial light modulator. Acta Physica Sinica, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [12] Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Generation of the array of optical traps by liquid crystal spatial light modulator. Acta Physica Sinica, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [13] Lu Jun-Fa, Zhou Qi, Yin Jian-Ping, Ji Xian-Ming. A combinative triple-well optical trap for three-species cold atoms or molecules. Acta Physica Sinica, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [14] Lu Xiang-Dong, Li Tong-Bao, Ma Yan, Wang Li-Dong. Investigation of atom-optical properties of laser focused Cr atomic deposition. Acta Physica Sinica, 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [15] Ji Xian-Ming, Xu Shu-Wu, Lu Jun-Fa, Xu Dong-Mei, Yin Jian-Ping. Generation of an adjustable double-well optical trap by shift phase gratings. Acta Physica Sinica, 2008, 57(12): 7591-7599. doi: 10.7498/aps.57.7591
    [16] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [17] Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [18] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [19] Duan Zheng-Lu, Zhang Wei-Ping, Li Shi-Qun, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Propagation of matter waves through the joint between two atomic waveguides. Acta Physica Sinica, 2005, 54(12): 5622-5628. doi: 10.7498/aps.54.5622
    [20] Ji Xian-Ming, Yin Jian-Ping. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
Metrics
  • Abstract views:  7819
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2018
  • Accepted Date:  17 December 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回