Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel design of microstrip antenna array with low scattering performance

Lan Jun-Xiang Cao Xiang-Yu Gao Jun Han Jiang-Feng Liu Tao Cong Li-Li Wang Si-Ming

Citation:

Novel design of microstrip antenna array with low scattering performance

Lan Jun-Xiang, Cao Xiang-Yu, Gao Jun, Han Jiang-Feng, Liu Tao, Cong Li-Li, Wang Si-Ming
PDF
HTML
Get Citation
  • In this paper, the idea of electromagnetic surface (EMS) is introduced into the design of microstrip antenna array. The antenna element proposed in this paper is treated as an EMS element, whose reflection characteristics are taken into consideration in the process of antenna array design. Firstly, a rectangular patch antenna element is designed. Then, by cutting arc-shaped structure into a rectangular patch, another element is created to generate 180° ± 30° effective phase difference compared with original antenna element. As a consequence, 180° ± 30° effective phase difference is obtained from 5.5 GHz to 6.9 GHz for the y-polarized incidence. Meanwhile, for the x-polarized incidence, each of the two elements possesses high absorptivity over the operating frequency as a result of matching load. Besides, the two elements work in the same resonant mode and the same resonant frequency band when treated as radiators. In order to further explain the consistency in radiation and difference in reflection between the two structures, current distribution at 5.8 GHz is investigated in terms of radiation and reflection. Then, the two elements are arranged into a chessboard array to achieve the low scattering performance based on phase cancellation principle under the y-polarized incidence. Based on the absorption principle, the matching load is added to improve the scattering performance of the composite antenna array with the x-polarized incidence. Simultaneously, the proposed antenna array maintains good radiation characteristics due to the consistency between the radiation performances of the two elements. The corresponding antenna array is fabricated and tested. Simulated and measured results prove that the proposed antenna array also achieves good radiation performance. And a 6 dB radar cross section reduction is obtained from 5.6 to 6.2 GHz under the x polarization and from 5.5 to 7.0 GHz under the y polarization for the normal incident wave, implying 10.1% and 24% in relative bandwidth, respectively. In-band reflection suppression in the specular direction is demonstrated for an incident angle of 30° under both polarizations. The measured results are in good agreement with the simulated ones. Additionally, the approach proposed in this paper offers an effective way to deal with the confliction between radiation and scattering performance, and can also be applied to other kinds of antenna arrays.
      Corresponding author: Cao Xiang-Yu, xiangyucaokdy@163.com ; Gao Jun, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61501494, 61671464, 61701523) and the Natural Science Foundationa of Shannxi Province, China (Grant Nos. 2017JM6025, 2018JM6040).
    [1]

    李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar

    Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar

    [2]

    Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar

    [3]

    姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162

    [4]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar

    [5]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [6]

    Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar

    [7]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [8]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [9]

    Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar

    [10]

    Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar

    [11]

    Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar

    [12]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar

    [13]

    Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar

    [14]

    杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar

    [15]

    Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [16]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar

    [17]

    Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar

    [18]

    Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar

    [19]

    Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar

    [20]

    Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar

    [21]

    孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282

    Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282

    [22]

    李响 2017 硕士学位论文 (南京: 南京信息工程大学)

    Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)

  • 图 1  单元三维结构示意图 (a) 单元1; (b) 单元2

    Figure 1.  Geometry of (a) element 1 and (b) element 2.

    图 2  匹配负载对EMS1反射特性的影响 (a) 反射幅度; (b) 反射相位

    Figure 2.  Reflection characteristics with and without matching load: (a) Reflection magnitude; (b) reflection phase.

    图 3  不同参数对EMS1反射特性的影响 (a) l1对反射幅度的影响; (b) l1对反射相位的影响; (c) s1对反射幅度的影响; (d) s1对反射相位的影响; (e) w1对反射幅度的影响; (f) w1对反射相位的影响

    Figure 3.  Effects of various parameters on reflection performance: Effects of l1 on (a) reflection magnitude and (b) phase; effects of s1 on (c) reflection magnitude and (d) phase; effects of w1 on (e) reflection magnitude and (f) phase.

    图 4  弧形缺口对天线|S11|及y极化下反射相位的影响

    Figure 4.  Influences of arc-shaped structure on reflection coefficient |S11| and reflection phase.

    图 5  天线单元辐射特性 (a) |S11|; (b) 方向图

    Figure 5.  Radiation properties of two elements: (a) Reflection coefficients |S11|; (b) two-dimensional radiation patterns at 5.8 GHz.

    图 6  EMS反射特性 (a) 反射幅度; (b) 反射相位

    Figure 6.  Reflection characteristics of two elements: (a) Reflection magnitude; (b) reflection phase.

    图 7  表面电场与电流分布 (a) E1在5.8 GHz的表面电场分布; (b) E2在5.8 GHz的表面电场分布; (c) EMS1在5.24 GHz的表面电流分布; (d) EMS2在6.86 GHz的表面电流分布

    Figure 7.  Surface E-field distributions at 5.8 GHz of (a) E1 and (b) E2; surface current distributions (c) at 5.24 GHz of EMS1 and (d) at 6.86 GHz of EMS2.

    图 8  设计天线阵的模型示意图

    Figure 8.  Schematic geometry of the proposed antenna array

    图 9  仿真天线阵辐射性能 (a) |S11|; (b) 增益; (c) 5.8 GHz处xoz面辐射方向图; (d) 5.8 GHz处yoz面辐射方向图

    Figure 9.  Simulated radiation properties of proposed antenna array: (a) Reflection coefficients |S11|; (b) gain; two-dimensional radiation patterns at 5.8 GHz for (c) xoz plane; (d) yoz plane.

    图 10  电磁波垂直入射时天线阵单站RCS (a) x极化; (b) y极化

    Figure 10.  Simulated scattering properties of antenna array under normal incidence: (a) x-polarization; (b) y-polarization.

    图 11  电磁波斜30°入射时天线阵镜像双站RCS (a) x极化; (b) y极化

    Figure 11.  Simulated specular scattering properties of antenna array for incident angle of 30°: (a) x-polarized incidence; (b) y-polarized incidence.

    图 12  5.8 GHz处三维散射图 (a) x极化下金属板; (b) x极化下天线阵; (c) y极化下金属板; (d) y极化下天线阵

    Figure 12.  Three-dimensional scattering patterns of total RCS at 5.8 GHz under x-polarized incidence for (a) metal board and (b) antenna array; under y-polarized incidence for (c) metal board and (d) antenna array.

    图 13  阵列天线实物及测试配置图 (a) 天线阵实物; (b) 功分器; (c) 散射测试环境

    Figure 13.  Fabricated sample of antenna array and testing environment: (a) Sample; (b) one in two power divider RS2W2080-S and one in eight power dividers RS8W2080-S; (c) testing environment for scattering performance.

    图 14  实测天线阵的辐射特性 (a) |S11|; (b) 5.8 GHz处xoz面辐射方向图; (c) 5.8 GHz处yoz面辐射方向图

    Figure 14.  Measured radiation properties of antenna array: (a) Measured reflection coefficients |S11|; two-dimensional radiation patterns at 5.8 GHz for (b) xoz plane; (c) yoz plane.

    图 15  RCS减缩量 (a) 入射波垂直入射; (b) 入射波斜30°入射

    Figure 15.  RCS reduction in contract to metal board for incident angles of (a) 0° and (b) 30°.

    表 1  本文所设计的低散射微带天线阵与文献[1720]中的对比

    Table 1.  Comparison between this work and other antenna arrays in Ref. [17−20].

    阵列规模阵元间隔/$\lambda $天线阵尺寸大小天线阵相对带宽/%带内RCS减缩量RCS缩减相对带宽/%
    文献[17]2 × 20.691.38$\lambda $ × 1.38$\lambda $2.4无减缩122
    文献[18]2 × 20.642.40$\lambda $ × 2.40$\lambda $10.93 dB以上126
    文献[19]2 × 20.603.65$\lambda $ × 3.65$\lambda $11.05 dB以上93
    文献[20]2 × 20.901.80$\lambda $ × 1.80$\lambda $5.5无减缩69
    本文4 × 40.481.92$\lambda $ × 1.92$\lambda $6.96 dB以上59
    DownLoad: CSV
  • [1]

    李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar

    Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar

    [2]

    Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar

    [3]

    姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162

    [4]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar

    [5]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [6]

    Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar

    [7]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [8]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [9]

    Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar

    [10]

    Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar

    [11]

    Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar

    [12]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar

    [13]

    Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar

    [14]

    杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar

    [15]

    Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [16]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar

    [17]

    Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar

    [18]

    Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar

    [19]

    Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar

    [20]

    Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar

    [21]

    孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282

    Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282

    [22]

    李响 2017 硕士学位论文 (南京: 南京信息工程大学)

    Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)

  • [1] Li Tong, Yang Huan-Huan, Li Qi, Liao Jia-Wei, Gao Kun, Ji Ke-Feng, Cao Xiang-Yu. Low-RCS electromagnetic metasurface antenna based on shared-aperture technique. Acta Physica Sinica, 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [2] Feng Kui-Sheng, Li Na, Yang Huan-Huan. A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna. Acta Physica Sinica, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [3] Hao Biao, Yang Bin-Feng, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Li Tong. A coding metasurface antenna array with low radar cross section. Acta Physica Sinica, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [4] Huo Long-Hua, Xie Guo-Feng. Mechanism of phonon scattering by under-coordinated atoms on surface. Acta Physica Sinica, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [5] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [6] Zhang Jin-Ling, Wan Wen-Gang, Zheng Zhan-Qi, Gan Xi, Zhu Xing-Yu. Research on X band extended cosecant squared beam synthesis of micro-strip antenna arrays using genetic algorithm. Acta Physica Sinica, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [7] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [8] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Yuan Hang-Ying, Shen Yang, Wang Dong-Jun, Guo Meng-Chao. Radar cross section reduction of microstrip antenna based on wide-band metamaterial absorber. Acta Physica Sinica, 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [9] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [10] Yu Tao, Yin Cheng-You, Liu Han. Analysis on spherical conformal microstrip antenna array by characteristic basis function method. Acta Physica Sinica, 2014, 63(23): 230701. doi: 10.7498/aps.63.230701
    [11] Yuan Zi-Dong, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Yang Qun, Li Wen-Qiang, Shang Kai. A novel frequency selective surface with stable performance and its application in microstrip antenna. Acta Physica Sinica, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [12] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [13] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [14] Diao Zhi-Hui, Huang Wen-Bin, Deng Shu-Peng, Liu Yong-Gang, Peng Zeng-Hui, Yao Li-Shuang, Xuan Li. Distributed-feedback laser based on low-scattering and high-gain holographic polymer dispersed liquid crystal grating. Acta Physica Sinica, 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [15] Guo Lin-Yan, Yang He-Lin, Li Min-Hua, Gao Chao-Song, Tian Yuan. A mircostrip antenna with single square ring structured left-handed metamaterial. Acta Physica Sinica, 2012, 61(1): 014102. doi: 10.7498/aps.61.014102
    [16] Bao Shi, Luo Chun-Rong, Zhao Xiao-Peng. S-wave band microstrip antenna with perfect absorbing metamaterial substrate. Acta Physica Sinica, 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [17] Zhang Xue-Qin, Wang Jun-Hong, Li Zheng. Time-domain scattering properties of microstrip array antennas. Acta Physica Sinica, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [18] Yang Rui, Xie Yong-Jun, Wang Peng, Yang Tong-Min. Subwavelength cavity resonator microstrip antennas based on left-and right-handed metamaterial bilayered substrates. Acta Physica Sinica, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [19] Wu Ming-Feng, Meng Fan-Yi, Wu Qun, Wu Jian. Investigation on the miniaturization of the microstrip antenna based on the back ward wave property of left-handed medium. Acta Physica Sinica, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [20] L. JEN, M. Y. LOO. THE SUPPRESSION OF SIDE-LOBES OF LINEAR ARRAYS. Acta Physica Sinica, 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
Metrics
  • Abstract views:  9194
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2018
  • Accepted Date:  30 October 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回