Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-RCS electromagnetic metasurface antenna based on shared-aperture technique

Li Tong Yang Huan-Huan Li Qi Liao Jia-Wei Gao Kun Ji Ke-Feng Cao Xiang-Yu

Citation:

Low-RCS electromagnetic metasurface antenna based on shared-aperture technique

Li Tong, Yang Huan-Huan, Li Qi, Liao Jia-Wei, Gao Kun, Ji Ke-Feng, Cao Xiang-Yu
PDF
HTML
Get Citation
  • In this paper, a novel shared-aperture method of electromagnetic metasurface and antenna is proposed to obtain low radar-cross-section (RCS) performance. In this method, the low-RCS metasurface is first designed, then this metasurface is combined with traditional antenna to obtain novel low-RCS antenna based on shared-aperture technique. Besides, the analysis and corresponding local structure modification are also conducted to ensure that the antenna has good radiation performance while reducing broadband RCS. Using this method, a dual-layer polarization rotation unit cell is first proposed and its broadband working principle is investigated by both theoretical analysis and numerical comparison. Based on this unit cell, a broadband low-RCS metasurface is constructed. Then an initial shared-aperture metasurface antenna is obtained by substituting the middle cells in the metasurface with traditional patch antenna directly. Through careful analysis of surface current in radiation mode, the gain decrease of this metasurface antenna is revealed. On this basis, a finite removal strategy is put forward and some metasurface cells in the antenna are removed by using the electric current analysis. Consequently, an improved shared-aperture metasurface antenna is proposed. This improved antenna works in a frequency range from 6.3 to 7.48 GHz, which is slightly wider than the traditional patch antenna. Its gain is also higher than that of traditional antenna, with a maximum improvement of 1 dB. Meanwhile, the apparent RCS decreases from 6 to 16 GHz for any polarized incident wave, and the reduction peak is larger than 20 dB. Finally, fabrications and measurements are conducted. The measurement results and numerical calculations are in good agreement. The well-behaved radiation performance and broadband low-RCS property of this metasurface antenna verify the effectiveness of the proposed method. Unlike most of reported design methods of low-RCS antennas directly from traditional antennas, the proposed method adopts reverse thinking to transform scattering optimization into radiation optimization, realizing the integration between metasurface and antenna, thus making low-RCS antenna design easier and faster.
      Corresponding author: Yang Huan-Huan, jianye8901@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62371466, 62171460, 62203464), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2024JC-ZDXM-39, 20220104, 2020022), and the Foundation of National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKJ2022KL504004).
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Cui T 2017 J. Opt. 19 084004Google Scholar

    [3]

    Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185Google Scholar

    [4]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar

    [5]

    Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982Google Scholar

    [6]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [7]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76Google Scholar

    [8]

    Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422Google Scholar

    [9]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar

    [10]

    Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508Google Scholar

    [11]

    Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448Google Scholar

    [12]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [13]

    Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67Google Scholar

    [14]

    Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665Google Scholar

    [15]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [16]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar

    [17]

    冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [19]

    Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927Google Scholar

    [20]

    Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582Google Scholar

    [21]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [22]

    Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955Google Scholar

    [23]

    Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834Google Scholar

    [24]

    Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar

    [26]

    Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975Google Scholar

    [27]

    Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768Google Scholar

    [28]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [29]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [30]

    Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626Google Scholar

    [31]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793Google Scholar

    [32]

    Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561Google Scholar

  • 图 1  极化旋转表面  (a) 单元透视图; (b) 单元俯视图; (c) 表面俯视图

    Figure 1.  Polarization rotation metasurface: (a) Perspective view; (b) top view of unit cell; (c) top view of proposed surface.

    图 2  极化旋转表面性能  (a) 单元反射幅度; (b) 单元反射性能分析; (c) 电流分析; (d) 表面单站RCS

    Figure 2.  Performance of proposed polarization conversion metasurface: (a) Reflection amplitude of uint cell; (b) reflection performance analysis of unit cell; (c) surface current analysis; (d) RCS of proposed surface.

    图 3  超构表面与天线共享孔径设计流程  (a) 超构表面; (b) 传统天线; (c) 共享孔径天线1; (d) 共享孔径天线2

    Figure 3.  Shared aperture of metasurface and antenna: (a) Metasurface; (b) conventional antenna; (c) shared-aperture antenna 1; (d) shared-aperture antenna 2.

    图 4  传统天线与共享孔径天线1的辐射性能对比  (a) 反射系数; (b) 增益

    Figure 4.  Radiation performance comparison of shared-aperture antenna 1 with conventional antenna: (a) Reflection coefficient; (b) gain.

    图 5  天线表面电流分析  (a), (d) 传统天线; (b), (e) 共享孔径天线1; (c), (f) 共享孔径天线2

    Figure 5.  Surface current analysis: (a), (d) Conventional antenna; (b), (e) shared-aperture antenna 1; (c), (f) shared-aperture antenna 2

    图 6  天线辐射性能对比  (a) 反射系数; (b) 增益; (c)—(f) 三维辐射方向图, 其中(c), (e) 传统天线, (d), (f) 共享孔径天线2; (g), (h) 二维辐射方向图

    Figure 6.  Radiation performance comparison of the antennas: (a) Reflection coefficient; (b) gain; (c)–(f) 3D radiation patterns, (c), (e) conventional antenna, (d), (f) shared-aperture antenna 2; (g), (h) 2D radiation patterns.

    图 7  天线RCS对比  (a) x极化; (b) y极化

    Figure 7.  RCS comparison of the antennas: (a) x polarization; (b) y polarization.

    图 8  天线散射方向图对比 (a)—(d) 传统天线; (e)—(h) 共享孔径天线2

    Figure 8.  Scattering patterns comparison of the antennas: (a)–(d) Conventional antenna; (e)–(h) shared-aperture antenna 2.

    图 9  斜入射下天线双站RCS对比  (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°

    Figure 9.  Bistatic RCS under different polarized oblique incidences: (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°.

    图 10  天线样件实物  (a) 传统天线; (b) 共享孔径天线2

    Figure 10.  Picture of fabricated antennas: (a) Conventional antenna; (b) shared-aperture antenna 2.

    图 11  实测天线的|S11|曲线

    Figure 11.  Measured |S11| of fabricated antennas.

    图 12  6.7 GHz实测天线方向图  (a) E面; (b) H

    Figure 12.  Measured radiation patterns at 6.7 GHz: (a) E plane; (b) H plane.

    图 13  共享孔径天线2单站RCS减缩曲线

    Figure 13.  Monostatic RCS reduction of shared-aperture antenna 2.

    表 1  本文设计共享孔径天线2与已有文献天线比较

    Table 1.  Comparison of shared-aperture antenna 2 in this work and antennas in previous work.

    对象 设计思路 设计方法 尺寸增加 辐射带宽拓宽 增益提升 带内/带外RCS减缩 设计复杂度
    [23] 辐射→低散射 加载超表面 仅带外
    [32] 辐射→低散射 加载超表面 带内+带外
    [28] 辐射散射一体 激励超表面 带内
    [30] 辐射散射一体 激励超表面 带内+带外
    [29] 低散射→辐射 激励超表面 带内+带外
    [31] 低散射→辐射 激励超表面 带内+带外
    本文 低散射→辐射 共享孔径 带内+带外
    DownLoad: CSV
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Cui T 2017 J. Opt. 19 084004Google Scholar

    [3]

    Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185Google Scholar

    [4]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar

    [5]

    Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982Google Scholar

    [6]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [7]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76Google Scholar

    [8]

    Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422Google Scholar

    [9]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar

    [10]

    Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508Google Scholar

    [11]

    Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448Google Scholar

    [12]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [13]

    Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67Google Scholar

    [14]

    Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665Google Scholar

    [15]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [16]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar

    [17]

    冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [19]

    Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927Google Scholar

    [20]

    Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582Google Scholar

    [21]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [22]

    Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955Google Scholar

    [23]

    Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834Google Scholar

    [24]

    Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar

    [26]

    Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975Google Scholar

    [27]

    Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768Google Scholar

    [28]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [29]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [30]

    Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626Google Scholar

    [31]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793Google Scholar

    [32]

    Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561Google Scholar

  • [1] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] Ultra-thin, ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211254
    [3] Feng Kui-Sheng, Li Na, Yang Huan-Huan. A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna. Acta Physica Sinica, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [4] Liu Jun-Qun. A class of approximate computation method for antenna directivity. Acta Physica Sinica, 2020, 69(2): 028401. doi: 10.7498/aps.69.20191268
    [5] Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao. Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna. Acta Physica Sinica, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [6] Hao Biao, Yang Bin-Feng, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Li Tong. A coding metasurface antenna array with low radar cross section. Acta Physica Sinica, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [7] Ping Lan-Lan, Zhang Xin-Jun, Yang Hua, Xu Guo-Sheng, Chang Lei, Wu Dong-Sheng, Lü Hong, Zheng Chang-Yong, Peng Jin-Hua, Jin Hai-Hong, He Chao, Gan Gui-Hua. Optimal design of helicon wave antenna and numerical investigation into power deposition on helicon physics prototype experiment. Acta Physica Sinica, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [8] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [9] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Yuan Hang-Ying, Shen Yang, Wang Dong-Jun, Guo Meng-Chao. Radar cross section reduction of microstrip antenna based on wide-band metamaterial absorber. Acta Physica Sinica, 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [10] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [11] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [12] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [13] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang, Zhao Yi, Liu Hong-Xi. A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band. Acta Physica Sinica, 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [14] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [15] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [16] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [17] Yang Yong, Sun Wei-Qiang, Zhuang Qian-Wei, Feng Tao, Xu Sheng-Yong, Xie Si-Shen. High frequence structure simulator simulation and performance analysis for nearfield and wide band electric coupling antenna. Acta Physica Sinica, 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [18] Zheng Kui-Song, Wu Chang-Ying, Wan Guo-Bin, Wei Gao. Implementation of two-element antenna array with right/left-handed transmission line metamaterials. Acta Physica Sinica, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [19] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] Tang Zhi-Jun, He Yi-Gang. Analysis and calculation of radar cross section in passive RFID systems. Acta Physica Sinica, 2009, 58(7): 5126-5132. doi: 10.7498/aps.58.5126
Metrics
  • Abstract views:  2762
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2024
  • Accepted Date:  15 April 2024
  • Available Online:  24 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回