-
This paper presents a design method for frequency-phase composite reconfigurable metasurfaces. N PIN diodes are introduced into the metasurface unit. The on-off states of these PIN diodes regulate the resonance characteristics of the unit, constructing 2N switchable reflection phase states. After optimizing structural parameters, these reflection phase curves show 180° phase differences in different frequency bands. By leveraging frequency and phase regulation, the operational bandwidth of reconfigurable phase-shifting metasurfaces is effectively expanded. Based on this method, an ultra-wideband 1-bit phase-shifting metasurface unit is designed. Its 1-bit phase regulation band covers 5.4GHz–13.0 GHz, with a relative bandwidth of 82.6%. Lumped capacitors are introduced and their positions are optimized to precisely adjust current distribution, enabling low-loss performance of the unit. With a thickness of only 0.09λ, the unit features low profile, low cost, and low loss. A 16×16 unit array is further constructed. Through coding regulation, it generates scattering-controllable beams and orbital angular momentum (OAM) vortex waves. Experimental results show that the metasurface achieves over 10 dB radar cross section (RCS) reduction in the ultra-wideband range, demonstrating dynamic beam steering capability and high-efficiency low-scattering performance. This design provides new insights for applying reconfigurable metasurfaces in broadband communication, radar stealth, and intelligent electromagnetic environment regulation.
-
Keywords:
- reconfigurable metasurface /
- ultra-wideband /
- frequency reconfigurable /
- low radar cross section
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[2] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep.-Rev. Sec. Phys. Lett. 634 1
[3] Chen Q, Yang S L, Bai J J, Fu Y Q 2017 IEEE Trans. Antennas Propag. 65 4897
[4] Xing Z Y, Yang F, Yang P, Yang J H 2022 IEEE Antennas Wirel. Propag. Lett. 21 1659
[5] Li B, Liu X B, Shi H Y, Yang C, Chen Q, Zhang A X 2018 IEEE Access 6 78839
[6] Huang C X, Zhang J J, Cheng Q, Cui T J 2021 Adv. Funct. Mater. 312103379
[7] Xu J, Yang K X, Tian S, Zhao J P 2024 IEEE Antennas Wirel. Propag. Lett. 23 4658
[8] Zhao S H, Zhang S, Xue H, Li Y C, Zhang K Y, Liu H X, Li L 2024IEEE Antennas Wirel. Propag. Lett. 23 985
[9] Li Z H, Li S J, He C Y, Wu Y H, Hu L Q, Zhang Z Y, Li T, Yang H H 2024Adv. Phys. Res. 62400176
[10] Xu P, Tian H W, Jiang W X, Chen Z Z, Cao T, Qiu C W, Cui T J 2021 Adv. Opt. Mater. 92100159
[11] Yang H H, Li T, Liao J W, Gao K, Li Q, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 4069
[12] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325
[13] Yang H H, Li T, Jidi L, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075
[14] Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161
[15] Yang H H, Li T, Gao K, Guo Z X, Li Q, Li S J,, Cao X Y 2024Microwave Opt. Technol. Lett. 66 33965
[16] Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T, Liu X B, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 2046
[17] Zhang Z Y, Cao X Y, Yang H H, Li T, Li S J, Ji K F 2023 J. Phys. D:Appl. Phys. 56015103
[18] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014Light-Sci. Appl. 3e218
[19] Pitilakis A, Seckel M, Tasolamprou A C, Liu F, Deltsidis A, Manessis D, Ostmann A, Kantartzis N V, Liaskos C, Soukoulis C M, Tretyakov S A, Kafesaki M, Tsilipakos O 2022Phys. Rev. Appl. 17064060
[20] Yin T, Ren J, Chen Y J, Xu K D, Yin Y Z 2024 IEEE Trans. Antennas Propag. 72 6789
[21] Li W H, Qiu T S, Wang J F, Zheng L, Jing Y, Jia Y X, Wang H, Han Y J, Qu S B 2021 IEEE Trans. Antennas Propag. 69 296
[22] Wang P, Wang Y, Yan Z M, Zhou H C 2022 Chin. Phys. B 31124201
[23] Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F, Li T 2018 Opt. Mater. Express 8 3373
[24] Wang H L, Zhang Y K, Cheng Y T, Zhang T Y, Zheng S, Cui T J, Ma H F 2025 Laser Photonics Rev.
[25] Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572
[26] Cao W W, Zhang J W, Dai J Y, Wu L J, Yang H Q, Zhang Z, Li H D, Cheng Q 2025 Chin. Opt. Lett. 23023603
[27] Zhou S G, Zhao G, Xu H, Luo C W, Sun J Q, Chen G T, Jiao Y C 2022IEEE Antennas Wirel. Propag. Lett. 21 566
[28] Li T, Yang H H, Li Q, Tian J H, Gao K, Cong L L, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206
[29] Lu Y J, Cheng Q, Wang S R, Li H D, Dai J Y, Zhang Z, Luo J 2025Acta Opt. Sin. 2 0401001(in Chinese)[卢颖娟, 程强, 王思然, 李会东, 戴俊彦, 张珍, 罗将, 2025光学学报2 0401001]
[30] Li P, Yu H, Su J X, Song L W, Guo Q X, Li Z R 2023 IEEE Trans. Antennas Propag. 71 621
[31] Shi H Y, Liu R, Zhang Z Y, Chen X M, Wang L Y, Yi J J, Liu H W, Zhang A X 2024 IEEE Antennas Wirel. Propag. Lett. 23 4613
[32] Lan C W, Gao Y T, Gao Z H, Wang H Y, Bi K, Lei M, Zhao G A 2025 Chin. Phys. Lett. 42056303
[33] Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Appl. Mater. Interfaces 1665635
[34] Zheng Y J, Chen Q, Ding L, Yuan F, Fu Y Q 2023 J. Syst. Eng. Electron. 34 1473
[35] Li Y X, Zhu R C, Sui S, Cui Y N, Jia Y X, Han Y J, Fu X M, Feng C Q, Qu S B, Wang J F 2025 Nanophotonics 14 959
[36] Guo Q X, Hao F S, Qu M J, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 1241
[37] Chen Q, Chen Y, Yuan F, Bai J J, Zheng Y J, Fu Y Q 2023Chin. J. Radio. Sci. 38 989
Metrics
- Abstract views: 21
- PDF Downloads: 0
- Cited By: 0