Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A coding metasurface antenna array with low radar cross section

Hao Biao Yang Bin-Feng Gao Jun Cao Xiang-Yu Yang Huan-Huan Li Tong

Citation:

A coding metasurface antenna array with low radar cross section

Hao Biao, Yang Bin-Feng, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Li Tong
PDF
HTML
Get Citation
  • An aperiodic metasurface antenna array with low radar cross section (RCS) is designed. The upper patches of the two antenna elements have the same shape and are placed at an orthogonal position, which can effectively reduce the workload of simulating the reflection characteristics of the patch. As antenna elements, they have identical operational band and polarization mode, and as metasurfaces, they can form an effective phase difference of 180° ± 37°. The RCS of the array is reduced mainly by phase cancellation under the x polarization and by absorption under the y polarization. According to the coding metamaterial theory, the two elements can be coded aperiodically by using the programming software. Regarding element A and element B as “0” and “1”, respectively, the coding matrix can be solved by a genetic algorithm. Element A and element B are arranged according to positions “0” and “1” to obtain a proposed array. The scattering field of proposed array is diffusive, and the peak RCS is effectively reduced. In order to highlight the characteristics of the proposed array, the chessboard-type array is designed for comparison. The simulation results show that the radiation performance of proposed array is good. Comparing with the metal board of the same size, the 6 dB reduction bandwidth of the monostatic RCS is 4.8-7.4 GHz (relative bandwidth is 42.6%) under the x polarization and 4.6-7.8 GHz (relative bandwidth is 51.6%) under the y polarization. Comparing with the chessboard type array, the scattering energy distribution of the designed antenna array is very uniform and the peak RCS in space reduces obviously. When a 4.8 GHz electromagnetic wave is incident with different incident angles and polarization modes, the scattering field is diffusive. Compared with other similar arrays, the proposed array has advantages of simple design process and even scattering field. The experimental results are in good agreement with the simulation results. This work makes full use of the scattering characteristics of the antenna element itself to solve the problem that the array antenna possesses both good radiation characteristics and low scattering characteristics at the same time, and improves the design process of the antenna patch. This design method has certain universality and reference significance for designing the low RCS antenna array.
      Corresponding author: Yang Bin-Feng, bf_yang@163.com ; Gao Jun, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671464, 61701523, 61801508), the Natural Science Foundational of Shannxi Province, China (Grant Nos. 2017JM6025, 2019JQ-103), and the Postdoctoral Innovative Talents Support Program of China (Grant No. BX20180375)
    [1]

    李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar

    Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar

    [2]

    Son X T, Ikmo P 2014 IEEE Antennas Wirel. Propag. Lett. 13 587Google Scholar

    [3]

    Li G H, Zhai H Q, Li L, Liang C H, Yu R D, Liu S 2015 IEEE Trans. Antennas Propag. 63 525Google Scholar

    [4]

    Yoon J H, Yoon Y J, Lee W, So J 2012 Electron. Lett. 48 50Google Scholar

    [5]

    Deng T W, Li Z W, Chen Z N 2017 IEEE Trans. Antennas Propag. 65 5886Google Scholar

    [6]

    Saptarshi G, Kumar V S 2018 IEEE Trans. Electromagn. Compat. 60 166Google Scholar

    [7]

    Yan M B, Qu S B, Wang J F, Zhang J Q, Zhang A X, Xia S, Wang W J 2014 IEEE Antennas Wirel. Propag. Lett. 13 639Google Scholar

    [8]

    Bai Y, Zhao L, Ju D Q 2015 Opt. Express 23 8670Google Scholar

    [9]

    Agarwal M, Behera A K, Meshram M K 2016 Electron. Lett. 52 340Google Scholar

    [10]

    Ren J Y, Gong S X, Jiang W 2018 IEEE Antennas Wirel. Propag. Lett. 17 102Google Scholar

    [11]

    Liu X B, Zhang J S, Li W, Lu R, Zhu S T, Xu Z, Zhang A X 2017 IEEE Antennas Wirel. Propag. Lett. 16 1028Google Scholar

    [12]

    Zhang L B, Zhou P H, Lu H P, Zhang L 2016 Opt. Mater. 6 1393Google Scholar

    [13]

    于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐 2018 物理学报 67 224101Google Scholar

    Yu H C, Cao X Y, Gao J, Yang H H, Han J F, Zhu X W, Li T 2018 Acta Phys. Sin. 67 224101Google Scholar

    [14]

    Zhang J M, Yan L, Li L P, Zhang T, Li H H, Wang Q M, Hao Y N, Lei M, Bi K 2017 J. Appl. Phys. 122 014501Google Scholar

    [15]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [16]

    Wang X P, Wan L L, Chen T N, Song A L, Du X W 2016 AIP Adv. 6 065320Google Scholar

    [17]

    Sharma A, Gangwar D, Kanaujia B K, Dwari S 2018 AEU Int. J. Electron. Commun. 91 132Google Scholar

    [18]

    Liu X, Gao J, Cao X Y, Zhao Y, Li S J 2017 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [19]

    Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar

    [20]

    Zheng Y J, Cao X Y, Gao J, Yang H H, Zhou Y L, Liu T 2017 Opt. Express 25 30001Google Scholar

    [21]

    兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭 2019 物理学报 68 034101Google Scholar

    Lan J X, Cao X Y, Gao J, Han J F, Liu T, Cong L L, Wang S M 2019 Acta Phys. Sin. 68 034101Google Scholar

    [22]

    Liu Y, Jia Y T, Zhang W B, Wang Y Z, Gong S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199Google Scholar

  • 图 1  天线单元结构示意图 (a) 单元A立体结构; (b) 单元B立体结构; (c) 单元A平面结构; (d) 单元B平面结构

    Figure 1.  Three-dimensional geometry of (a) element A and (b) B; two-dimensional geometry of (c) element A and (d) B.

    图 2  不同参数对两单元性能的影响 (a) l2对单元A反射相位的影响; (b) l2对单元A反射幅度的影响; (c) l2对两单元|S11|的影响; (d) l6对单元A反射相位的影响; (e) l6对单元A反射幅度的影响; (f) l6对两单元|S11|的影响

    Figure 2.  Effects of l2 and l6: Effects of l2 on (a) reflection phase of element A, (b) reflection magnitude of element A, and (c) |S11| of element A and B; effects of l6 on (d) reflection phase of element A, (e) reflection magnitude of element A, and (f) |S11| of element A and B.

    图 3  不同参数对单元B性能的影响 (a) lp2对反射相位的影响; (b) lp2对反射幅度的影响; (c) lp2对|S11|的影响; (d) ls对反射相位的影响; (e) ls对反射幅度的影响; (f) ls对|S11|的影响

    Figure 3.  Effects of lp2 and ls on element B: Effects of lp2 on (a) reflection phase, (b) reflection magnitude, and (c) |S11|; effects of ls on (d) reflection phase, (e) reflection magnitude, and (f) |S11|.

    图 4  两单元的辐射特性 (a) |S11|及增益曲线; (b) 单元A在5 GHz时的辐射方向图; (c) 单元B在5 GHz时的辐射方向图

    Figure 4.  Radiation characteristics of two elements: (a) |S11| and gain; radiation pattern of (b) element A and (c) element B at 5 GHz.

    图 5  两单元的反射特性 (a) 反射相位; (b) 反射相位差; (c) 反射幅度

    Figure 5.  Reflection characteristics of two elements: (a) Reflection phase; (b) reflection phase difference; (c) reflection magnitude.

    图 6  两单元表面电流分布 (a) 单元A在5.7 GHz时; (b)单元B在4.7 GHz时

    Figure 6.  Surface current distributions of (a) element A at 5.7 GHz and (b) element B at 4.7 GHz.

    图 7  天线阵列结构示意图 (a) 设计天线阵; (b) 棋盘式天线阵

    Figure 7.  Geometry of (a) proposed array and (b) chessboard type array.

    图 8  两天线阵列辐射特性 (a) 实际增益曲线; (b) 设计天线阵中心单元的|S11|曲线; (c) 设计天线阵在5 GHz时的辐射方向图; (d) 棋盘式天线阵在5 GHz时的辐射方向图

    Figure 8.  Radiation characteristics of two arrays: (a) Realized gain; (b) |S11| of elements of proposed array; radiation pattern of (c) proposed array and (d) chessboard type array at 5 GHz.

    图 9  天线阵单站RCS减缩曲线

    Figure 9.  RCS reduction.

    图 10  垂直入射时三维散射场分布 (a) 5 GHz时金属板散射场分布; (b) 5 GHz时棋盘式天线阵散射场分布; (c) 5 GHz时设计天线阵散射场分布; (d) 6.4 GHz时金属板散射场分布; (e) 6.4 GHz时棋盘式天线阵散射场分布; (f) 6.4 GHz时设计天线阵散射场分布

    Figure 10.  Three-dimensional scattering field for normal incidence: (a) Metal board, (b) chessboard type array and (c) proposed array at 5 GHz; (d) metal board, (e) chessboard type array and (f) proposed array at 6.4 GHz.

    图 11  斜入射时三维散射场分布 (a) TE极化波15°入射; (b) TE极化波30°入射; (c) TE极化波45°入射; (d) TM极化波15°入射; (e) TM极化波30°入射; (f) TM极化波45°入射

    Figure 11.  Three-dimensional scattering field: (a) 15°, (b) 30°, (c) 45° under TE polarized plane wave; (d) 15°, (e) 30°, (f) 45° under TM polarized plane wave.

    图 12  天线阵镜像双站RCS减缩曲线 (a) TM极化波; (b) TE极化波

    Figure 12.  Mirror bistatic RCS reduction: (a) TM polarized plane wave; (b) TE polarized plane wave.

    图 13  样品天线测试 (a) 天线阵样品; (b) 功分器; (c) 散射测试环境

    Figure 13.  Testing proposed array: (a) Sample; (b) power dividers; (c) testing environment of scattering performance.

    图 14  实测天线阵中心单元的|S11|曲线 (a) E1单元; (b) E2单元; (c) E3单元; (d) E4单元

    Figure 14.  Measured |S11| of elements of proposed array: (a) E1; (b) E2; (c) E3; (d) E4.

    图 15  实测天线阵方向图 (a) xoz面; (b) yoz

    Figure 15.  Measured radiation patterns of proposed array: (a) xoz plane; (b) yoz plane.

    图 16  实测天线阵单站RCS减缩曲线 (a) x极化; (b) y极化

    Figure 16.  Measured monostatic RCS reduction: (a) x-polarized; (b) y-polarized.

    表 1  几种超表面天线阵列性能对比

    Table 1.  Comparison of other metasurface antenna arrays.

    文献单元上层
    贴片形状
    布阵方式是否所有单元
    同频工作
    工作频段/GHz法线方向单站RCS 6 dB
    减缩带宽/GHz
    是否出现
    漫散射
    文献[20]2种棋盘布阵5.7—6.2 (8.4%),
    6.5—7.3 (11.6%)
    5.6—7.4 (12.3%)
    文献[21]2种棋盘布阵5.6—6.0 (6.9%)5.5—7.0 (24.0%)
    文献[22]2种条带布阵4.8—5.3 (9.9%)4.6—7.4 (46.7%)
    本文1种非周期布阵4.7—5.1 (8.2%)4.8—7.4 (42.6%)
    DownLoad: CSV
  • [1]

    李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar

    Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar

    [2]

    Son X T, Ikmo P 2014 IEEE Antennas Wirel. Propag. Lett. 13 587Google Scholar

    [3]

    Li G H, Zhai H Q, Li L, Liang C H, Yu R D, Liu S 2015 IEEE Trans. Antennas Propag. 63 525Google Scholar

    [4]

    Yoon J H, Yoon Y J, Lee W, So J 2012 Electron. Lett. 48 50Google Scholar

    [5]

    Deng T W, Li Z W, Chen Z N 2017 IEEE Trans. Antennas Propag. 65 5886Google Scholar

    [6]

    Saptarshi G, Kumar V S 2018 IEEE Trans. Electromagn. Compat. 60 166Google Scholar

    [7]

    Yan M B, Qu S B, Wang J F, Zhang J Q, Zhang A X, Xia S, Wang W J 2014 IEEE Antennas Wirel. Propag. Lett. 13 639Google Scholar

    [8]

    Bai Y, Zhao L, Ju D Q 2015 Opt. Express 23 8670Google Scholar

    [9]

    Agarwal M, Behera A K, Meshram M K 2016 Electron. Lett. 52 340Google Scholar

    [10]

    Ren J Y, Gong S X, Jiang W 2018 IEEE Antennas Wirel. Propag. Lett. 17 102Google Scholar

    [11]

    Liu X B, Zhang J S, Li W, Lu R, Zhu S T, Xu Z, Zhang A X 2017 IEEE Antennas Wirel. Propag. Lett. 16 1028Google Scholar

    [12]

    Zhang L B, Zhou P H, Lu H P, Zhang L 2016 Opt. Mater. 6 1393Google Scholar

    [13]

    于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐 2018 物理学报 67 224101Google Scholar

    Yu H C, Cao X Y, Gao J, Yang H H, Han J F, Zhu X W, Li T 2018 Acta Phys. Sin. 67 224101Google Scholar

    [14]

    Zhang J M, Yan L, Li L P, Zhang T, Li H H, Wang Q M, Hao Y N, Lei M, Bi K 2017 J. Appl. Phys. 122 014501Google Scholar

    [15]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [16]

    Wang X P, Wan L L, Chen T N, Song A L, Du X W 2016 AIP Adv. 6 065320Google Scholar

    [17]

    Sharma A, Gangwar D, Kanaujia B K, Dwari S 2018 AEU Int. J. Electron. Commun. 91 132Google Scholar

    [18]

    Liu X, Gao J, Cao X Y, Zhao Y, Li S J 2017 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [19]

    Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar

    [20]

    Zheng Y J, Cao X Y, Gao J, Yang H H, Zhou Y L, Liu T 2017 Opt. Express 25 30001Google Scholar

    [21]

    兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭 2019 物理学报 68 034101Google Scholar

    Lan J X, Cao X Y, Gao J, Han J F, Liu T, Cong L L, Wang S M 2019 Acta Phys. Sin. 68 034101Google Scholar

    [22]

    Liu Y, Jia Y T, Zhang W B, Wang Y Z, Gong S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199Google Scholar

  • [1] Li Tong, Yang Huan-Huan, Li Qi, Liao Jia-Wei, Gao Kun, Ji Ke-Feng, Cao Xiang-Yu. Low-RCS electromagnetic metasurface antenna based on shared-aperture technique. Acta Physica Sinica, 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [2] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [3] Theoretical study on the single-photon quantum radar cross-section of a cylindrical curved surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211295
    [4] Ultra-thin, ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211254
    [5] Feng Kui-Sheng, Li Na, Yang Huan-Huan. A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna. Acta Physica Sinica, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [6] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [7] Lan Jun-Xiang, Cao Xiang-Yu, Gao Jun, Han Jiang-Feng, Liu Tao, Cong Li-Li, Wang Si-Ming. Novel design of microstrip antenna array with low scattering performance. Acta Physica Sinica, 2019, 68(3): 034101. doi: 10.7498/aps.68.20181708
    [8] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [9] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Yuan Hang-Ying, Shen Yang, Wang Dong-Jun, Guo Meng-Chao. Radar cross section reduction of microstrip antenna based on wide-band metamaterial absorber. Acta Physica Sinica, 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [10] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [11] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [12] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [13] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang, Zhao Yi, Liu Hong-Xi. A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band. Acta Physica Sinica, 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [14] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [15] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [16] Lu Lei, Qu Shao-Bo, Ma Hua, Xia Song, Xu Zhuo, Wang Jia-Fu, Yu Fei. A broadband artificial magnetic conductor composite structure for radar cross section reduction. Acta Physica Sinica, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [17] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [18] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [19] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [20] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
Metrics
  • Abstract views:  7929
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  24 June 2020
  • Accepted Date:  26 July 2020
  • Available Online:  08 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回