-
To solve the small frequency ratio of the frequency-reconfigurable antenna operating at the millimeter-wave band, a millimeter-wave dual-band frequency-reconfigurable filtering antenna is proposed. The proposed filtering antenna consists of a reconfigurable bandpass filter and an ultra-wideband double-layer Vivaldi antenna. The reconfigurable bandpass filter comprises of several components, including parallel coupled lines, stepped impedance resonator (SIR), PIN diodes, U-shaped branches, and bias network. The reconfigurable filter is integrated in the feedline of the Vivaldi antenna, which provides a simple structure and offers flexibility for further expansion. The reconfigurable characteristic is realized by controlling the electrical length of the open circuit stepped impedance resonator through two PIN diodes, which not only acts as a switch but also affects the impedance matching within the millimeter wave band. Firstly, the equivalent circuit model of the SIR loaded with PIN diode and bias network is analyzed and simulated to achieve dual-band reconfigurability in the Ka-band. The bias network consists of fan-shaped branches and high-impedance microstrip lines, which suppresses the flow of RF signals. Two notches are introduced by the two U-shaped branches, which are placed beside the parallel coupling line without affecting the performance of the reconfigurable filter. The realized two notches are located in the non-operating frequency band between the two reconfigurable bands, which enhances the out-of-band performances of the reconfigurable filter. Then, to suppress the unnecessary coupling effect and concentrate the energy on the feedline of the Vivaldi antenna, some metallized vias are loaded at the two sides of the feedline. Finally, a metal cavity is introduced to isolate the radiation and filtering components, and some metal columns are loaded inside the cavity for improving the self-resonance of the metal cavity, which effectively improves the cross-polarization level of the filtering antenna. The measured results show that the proposed antenna operates in the range from 25.9 to 28.6 GHz with a maximum gain of 8.83 dBi when the PIN diodes are in the ON state, and in the range from 32.6 to 35.9 GHz with a maximum gain of 9.97 dBi when the PIN diodes are in the OFF state. The center frequency ratio of two reconfigurable frequency bands reaches 1:1.26, and the cross-polarization levels are all less than -20 dB in both operating bands.
-
Keywords:
- millimeter-wave antenna /
- filtering antenna /
- frequency reconfigurable /
- PIN diode
-
图 8 加载金属腔对天线辐射方向图的影响: PIN二极管导通, 27 GHz时 (a) E面辐射方向图, (b) H面辐射方向图; PIN二极管断开, 35 GHz时(c) E面方向图, (d) H面方向图
Figure 8. Effect of loaded metal cavity on antenna radiation pattern: (a) PIN diodes are on state, E-plane pattern at 27 GHz; (b) PIN diodes are on state, H-plane pattern at 27 GHz; (c) PIN diodes are off state, E-plane pattern at 35 GHz; (d) PIN diodes are off state, H-plane pattern at 35 GHz.
表 1 可重构滤波器的结构参数(单位: mm)
Table 1. Structural parameters of the reconfigurable filter (unit: mm).
$ w_0 $ $ w_1 $ $ w_2 $ $ w_3 $ $ w_4 $ $ w_5 $ $ l_1 $ $ l_2 $ $ l_3 $ $ l_4 $ $ l_5 $ $ l_6 $ 0.78 0.30 0.50 0.60 0.60 0.85 0.07 0.07 0.80 0.80 0.40 0.20 $ n_1 $ $ n_2 $ $ n_3 $ $ n_4 $ $ s_0 $ $ s_1 $ $ w_{\rm i} $ $ g_{\rm i} $ $ g_{\rm p} $ $ l_{\rm g} $ $ r $ 1.60 0.20 1.50 0.50 0.10 0.05 0.10 0.10 0.10 0.35 0.10 表 2 Vivaldi天线结构参数(单位: mm)
Table 2. Structural parameters of the Vivaldi antenna (unit: mm).
$ w_0 $ $ w_1 $ $ w_2 $ $ w_3 $ $ w_4 $ $ l_0 $ $ l_1 $ $ l_2 $ 22.00 14.60 0.34 0.24 0.12 33.00 15.00 1.50 $ l_3 $ $ l_4 $ $ l_5 $ $ l_{\rm S} $ $ d $ $ r $ $ c $ $ h $ 1.70 2.15 1.20 3.00 20.00 1.70 0.30 0.25 表 3 与其他Ka波段频率可重构天线的比较
Table 3. Comparison with other frequency reconfigurable antennas in the Ka-band range.
-
[1] Yang X J, Ge L, Ji Y, Zeng X R, Luk K M 2019 IEEE Trans. Antennas Propagat. 67 6639Google Scholar
[2] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102Google Scholar
Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102Google Scholar
[3] Feng L Y, Leung K W 2016 IEEE Trans. Antennas Propagat. 64 340Google Scholar
[4] Xiang B J, Zheng S Y, Wong H, Pan Y M, Wang K X, Xia M H 2018 IEEE Trans. Antennas Propagat. 66 657Google Scholar
[5] Deng Q J, Pan Y M, Liu X Y, Leung K W 2023 IEEE Trans. Antennas Propagat. 71 1971Google Scholar
[6] Zou J J, Zhao Y, Yang X J, Ge L, Sun Y X 2023 IEEE Antennas Wirel. Propag. Lett. 22 1513Google Scholar
[7] Chen Q G, Ala-Laurinaho J, Khripkov A, Ilvonen J, Moreno R M, Viikari V 2023 IEEE Trans. Antennas Propagat. 71 6628Google Scholar
[8] Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Antennas Wirel. Propag. Lett. 20 2095Google Scholar
[9] Kumar Naik K, Sailaja B V S 2024 IEEE Open J. Antennas Propag. 5 673Google Scholar
[10] Yang W C, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2021 IEEE Trans. Antennas Propagat. 69 4359Google Scholar
[11] 李靖豪, 杨琬琛, 周晨昱, 薛泉, 文岐业, 车文荃 2022 无线电工程 52 317Google Scholar
Li J H, Ya ng, Chen W, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2022 Radio Engineering 52 317Google Scholar
[12] Kim J, Oh J 2020 IEEE Antennas Wirel. Propag. Lett. 19 1958Google Scholar
[13] Jilani S F, Rahimian A, Alfadhl Y, Alomainy A 2018 Flexible and Printed Electronics 3 1
[14] Karthika K, Kavitha K, Darsani S, Preethi B, Pavithra P S 2022 In 2022 8 th International Conference on Advanced Computing and Communication Systems (ICACCS) 1 pp 907–911
[15] Choi J, Park J, Youn Y, Hwang W, Seong H, Whang Y N, Hong W 2020 Trans. Microw. Theory Tech. 68 1872Google Scholar
[16] Sun W, Liu S X, Zhu X, Zhang X L, Chi P L, Yang T 2022 IEEE Trans. Antennas Propagat. 70 156Google Scholar
[17] Chen Q G, Ala-Laurinaho J, Khripkov A, Ilvonen J, Moreno R M, Viikari V 2023 IEEE Trans. Antennas Propagat. 71 6628Google Scholar
[18] Shi Y R, Ni X Y, Qian Z Y, He S J, Feng W J 2023 IEEE Antennas Wirel. Propag. Lett. 22 3097Google Scholar
[19] Liu Q D, Dong Q, Wen J X, Ye L H, Wu D L, Zhang X Y 2023 IEEE Antennas Wirel. Propag. Lett. 22 2310Google Scholar
[20] Kuosmanen M, Holopainen J, Ala-Laurinaho J, Kiuru T, Viikari V 2023 IEEE Trans. Antennas Propagat. 71 6546Google Scholar
[21] Guo C G, Zhang Z, Fu X N, Wang J H 2023 IEEE Antennas Wirel. Propag. Lett. 22 1793Google Scholar
[22] Ma T C, Dang Q H, Fumeaux C, Nguyen-Trong N 2024 IEEE Trans. Antennas Propagat. 72 2998Google Scholar
[23] Tewari N, Dadel M, Srivastava S 2023 In 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). pp 1–5
[24] Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Open J. Antennas Propag. 2 759Google Scholar
[25] 邹晓鋆, 许旭光, 康国钦, 朱航, 谭铭, 宋伟 2023 电子与信息学报 45 3973Google Scholar
[26] Mandal M K, Sanyal S 2006 IEEE Microw. Wirel. Compon. Lett. 16 597Google Scholar
[27] Lu J C, Liao C K, Chang C Y 2008 Trans. Microw. Theory Tech. 56 2101Google Scholar
[28] Tu W H 2010 IEEE Microw. Wirel. Compon. Lett. 20 208Google Scholar
[29] 冯丽君 2022 硕士学位论文 (四川: 电子科技大学)
Yang K H 2022 M.S. Thesis
[30] March S L 1985 Trans. Microw. Theory Tech. 3 269
[31] Xu J, Wu W, Kang W, Miao C 2012 IEEE Microw. Wirel. Compon. Lett. 22 351Google Scholar
[32] Wan F, Wu L, Ravelo B, Ge J 2020 IEEE Trans. Electromagn Compat. 62 1813Google Scholar
[33] Jiang W, Che W 2012 IEEE Antennas Wirel. Propag. Lett. 11 293Google Scholar
Metrics
- Abstract views: 171
- PDF Downloads: 5
- Cited By: 0