Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Millimeter-Wave Frequency-Reconfigurable Filtering Antenna with High Frequency Turning Ratio

Yang Guo Shi Hong-Qiang Li Xiao-Cong Xiao Ru-Qi Qi Shi-Shan Wu Wen

Citation:

Millimeter-Wave Frequency-Reconfigurable Filtering Antenna with High Frequency Turning Ratio

Yang Guo, Shi Hong-Qiang, Li Xiao-Cong, Xiao Ru-Qi, Qi Shi-Shan, Wu Wen
PDF
HTML
Get Citation
  • To solve the small frequency ratio of the frequency-reconfigurable antenna operating at the millimeter-wave band, a millimeter-wave dual-band frequency-reconfigurable filtering antenna is proposed. The proposed filtering antenna consists of a reconfigurable bandpass filter and an ultra-wideband double-layer Vivaldi antenna. The reconfigurable bandpass filter comprises of several components, including parallel coupled lines, stepped impedance resonator (SIR), PIN diodes, U-shaped branches, and bias network. The reconfigurable filter is integrated in the feedline of the Vivaldi antenna, which provides a simple structure and offers flexibility for further expansion. The reconfigurable characteristic is realized by controlling the electrical length of the open circuit stepped impedance resonator through two PIN diodes, which not only acts as a switch but also affects the impedance matching within the millimeter wave band. Firstly, the equivalent circuit model of the SIR loaded with PIN diode and bias network is analyzed and simulated to achieve dual-band reconfigurability in the Ka-band. The bias network consists of fan-shaped branches and high-impedance microstrip lines, which suppresses the flow of RF signals. Two notches are introduced by the two U-shaped branches, which are placed beside the parallel coupling line without affecting the performance of the reconfigurable filter. The realized two notches are located in the non-operating frequency band between the two reconfigurable bands, which enhances the out-of-band performances of the reconfigurable filter. Then, to suppress the unnecessary coupling effect and concentrate the energy on the feedline of the Vivaldi antenna, some metallized vias are loaded at the two sides of the feedline. Finally, a metal cavity is introduced to isolate the radiation and filtering components, and some metal columns are loaded inside the cavity for improving the self-resonance of the metal cavity, which effectively improves the cross-polarization level of the filtering antenna. The measured results show that the proposed antenna operates in the range from 25.9 to 28.6 GHz with a maximum gain of 8.83 dBi when the PIN diodes are in the ON state, and in the range from 32.6 to 35.9 GHz with a maximum gain of 9.97 dBi when the PIN diodes are in the OFF state. The center frequency ratio of two reconfigurable frequency bands reaches 1:1.26, and the cross-polarization levels are all less than -20 dB in both operating bands.
  • 图 1  可重构滤波器结构

    Figure 1.  Reconfigurable Filter Structure.

    图 2  SIR结构加载直流偏置网络的等效电路模型 (a) PIN二极管导通; (b) PIN二极管断开

    Figure 2.  Equivalent circuit model of SIR structure loaded DC bias networks: (a) PIN diode are off state; (b) PIN diode are off state.

    图 3  可重构滤波器S参数曲线图

    Figure 3.  S-parameters curve of reconfigurable filter structure.

    图 4  毫米波频率可重构天线三维视图 (a)顶面; (b)侧面; (c)底面; (d)三维爆炸图

    Figure 4.  Millimetre wave frequency reconfigurable antenna 3D view. (a) top view; (b) side view; (c) bottom view; (d) 3D exploded view

    图 5  Vivaldi双面天线及其加载金属化过孔前后电场分布 (a)天线结构; (b)未加载金属化过孔; (c)加载金属化过孔

    Figure 5.  Double-layer Vivaldi antenna and its electric field distribution before and after loaded the metallised via: (a) antenna structure; (b) unloaded metallised via; (c) loaded metallised via.

    图 6  加载金属腔后天线的三维视图 (a)顶面; (b)侧面; (c)三维爆炸图

    Figure 6.  3D view of antenna loaded metal cavity: (a) top view; (b) side view; (c) 3D exploded view.

    图 7  加载金属腔和金属柱对天线反射系数的影响 (a) PIN二极管导通; (b) PIN二极管断开

    Figure 7.  Effect of loaded metal cavity and metal column on antenna reflection coefficient: (a) PIN diodes are off state; (b) PIN diodes are off state.

    图 8  加载金属腔对天线辐射方向图的影响: PIN二极管导通, 27 GHz时 (a) E面辐射方向图, (b) H面辐射方向图; PIN二极管断开, 35 GHz时(c) E面方向图, (d) H面方向图

    Figure 8.  Effect of loaded metal cavity on antenna radiation pattern: (a) PIN diodes are on state, E-plane pattern at 27 GHz; (b) PIN diodes are on state, H-plane pattern at 27 GHz; (c) PIN diodes are off state, E-plane pattern at 35 GHz; (d) PIN diodes are off state, H-plane pattern at 35 GHz.

    图 9  制作的天线实物图 (a) Vivaldi天线和可重构滤波器; (b)加载金属腔的天线

    Figure 9.  Photographs of the fabricated antenna: (a) Vivaldi antenna and the reconfigurable filter; (b) the antenna loaded metal cavity.

    图 10  频率可重构天线仿真与实测反射系数$ S_{11} $曲线 (a) PIN二极管导通; (b) PIN二极管断开

    Figure 10.  Frequency reconfigurable antenna simulated and measured reflection coefficient $ S_{11} $ curves: (a) PIN diodes are off state; (b) PIN diodes are off state.

    图 11  频率可重构天线仿真与实测增益曲线 (a) PIN二极管导通; (b) PIN二极管断开

    Figure 11.  Frequency reconfigurable antenna simulated and measured Gain curves: (a) PIN diodes are off state; (b) PIN diodes are off state.

    图 12  PIN二极管的寄生参数对天线反射系数$ S_{11} $的影响 (a)$ C_{\rm {p}} $的频率响应; (b)$ L_{\rm {so}} $的频率响应

    Figure 12.  Effect of parasitic parameters of the PIN diode on the antenna reflection coefficient $ S_{11} $: (a) frequency response of $ C_{\rm {p}} $; (b) frequency response of $ L_{\rm {so}} $

    图 13  频率可重构天线27 GHz仿真与实测辐射方向图 (a)E面方向图; (b)H面方向图

    Figure 13.  Frequency reconfigurable antenna at 27 GHz simulated and measured radiation pattern:(a) E-plane pattern;(b) H-plane pattern.

    图 14  频率可重构天线35 GHz仿真与实测辐射方向图 (a)E面方向图; (b)H面方向图

    Figure 14.  Frequency reconfigurable antenna at 35 GHz simulated and measured radiation pattern:(a) E-plane pattern;(b) H-plane pattern.

    表 1  可重构滤波器的结构参数(单位: mm)

    Table 1.  Structural parameters of the reconfigurable filter (unit: mm).

    $ w_0 $ $ w_1 $ $ w_2 $ $ w_3 $ $ w_4 $ $ w_5 $ $ l_1 $ $ l_2 $ $ l_3 $ $ l_4 $ $ l_5 $ $ l_6 $
    0.78 0.30 0.50 0.60 0.60 0.85 0.07 0.07 0.80 0.80 0.40 0.20
    $ n_1 $ $ n_2 $ $ n_3 $ $ n_4 $ $ s_0 $ $ s_1 $ $ w_{\rm i} $ $ g_{\rm i} $ $ g_{\rm p} $ $ l_{\rm g} $ $ r $
    1.60 0.20 1.50 0.50 0.10 0.05 0.10 0.10 0.10 0.35 0.10
    DownLoad: CSV

    表 2  Vivaldi天线结构参数(单位: mm)

    Table 2.  Structural parameters of the Vivaldi antenna (unit: mm).

    $ w_0 $ $ w_1 $ $ w_2 $ $ w_3 $ $ w_4 $ $ l_0 $ $ l_1 $ $ l_2 $
    22.00 14.60 0.34 0.24 0.12 33.00 15.00 1.50
    $ l_3 $ $ l_4 $ $ l_5 $ $ l_{\rm S} $ $ d $ $ r $ $ c $ $ h $
    1.70 2.15 1.20 3.00 20.00 1.70 0.30 0.25
    DownLoad: CSV

    表 3  与其他Ka波段频率可重构天线的比较

    Table 3.  Comparison with other frequency reconfigurable antennas in the Ka-band range.

    天线 天线类型 可重构频带/GHz 频率调谐比 可重构方式 开关数量 最大增益/dBi
    [12] 微带贴片 27.30$ \sim $30.10 1:1.10 液晶 N/A 6.5
    [15] 孔径缝隙 27.95/28.65 1:1.02 PIN 1 6.4/6.1
    24] 微带贴片 25.00/26.00 1:1.16 PIN 2 13
    27.75/29.05
    本文 Vivaldi 27.25/34.25 1:1.26 PIN 2 8.83/9.97
    DownLoad: CSV
  • [1]

    Yang X J, Ge L, Ji Y, Zeng X R, Luk K M 2019 IEEE Trans. Antennas Propagat. 67 6639Google Scholar

    [2]

    袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102Google Scholar

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102Google Scholar

    [3]

    Feng L Y, Leung K W 2016 IEEE Trans. Antennas Propagat. 64 340Google Scholar

    [4]

    Xiang B J, Zheng S Y, Wong H, Pan Y M, Wang K X, Xia M H 2018 IEEE Trans. Antennas Propagat. 66 657Google Scholar

    [5]

    Deng Q J, Pan Y M, Liu X Y, Leung K W 2023 IEEE Trans. Antennas Propagat. 71 1971Google Scholar

    [6]

    Zou J J, Zhao Y, Yang X J, Ge L, Sun Y X 2023 IEEE Antennas Wirel. Propag. Lett. 22 1513Google Scholar

    [7]

    Chen Q G, Ala-Laurinaho J, Khripkov A, Ilvonen J, Moreno R M, Viikari V 2023 IEEE Trans. Antennas Propagat. 71 6628Google Scholar

    [8]

    Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Antennas Wirel. Propag. Lett. 20 2095Google Scholar

    [9]

    Kumar Naik K, Sailaja B V S 2024 IEEE Open J. Antennas Propag. 5 673Google Scholar

    [10]

    Yang W C, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2021 IEEE Trans. Antennas Propagat. 69 4359Google Scholar

    [11]

    李靖豪, 杨琬琛, 周晨昱, 薛泉, 文岐业, 车文荃 2022 无线电工程 52 317Google Scholar

    Li J H, Ya ng, Chen W, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2022 Radio Engineering 52 317Google Scholar

    [12]

    Kim J, Oh J 2020 IEEE Antennas Wirel. Propag. Lett. 19 1958Google Scholar

    [13]

    Jilani S F, Rahimian A, Alfadhl Y, Alomainy A 2018 Flexible and Printed Electronics 3 1

    [14]

    Karthika K, Kavitha K, Darsani S, Preethi B, Pavithra P S 2022 In 2022 8 th International Conference on Advanced Computing and Communication Systems (ICACCS) 1 pp 907–911

    [15]

    Choi J, Park J, Youn Y, Hwang W, Seong H, Whang Y N, Hong W 2020 Trans. Microw. Theory Tech. 68 1872Google Scholar

    [16]

    Sun W, Liu S X, Zhu X, Zhang X L, Chi P L, Yang T 2022 IEEE Trans. Antennas Propagat. 70 156Google Scholar

    [17]

    Chen Q G, Ala-Laurinaho J, Khripkov A, Ilvonen J, Moreno R M, Viikari V 2023 IEEE Trans. Antennas Propagat. 71 6628Google Scholar

    [18]

    Shi Y R, Ni X Y, Qian Z Y, He S J, Feng W J 2023 IEEE Antennas Wirel. Propag. Lett. 22 3097Google Scholar

    [19]

    Liu Q D, Dong Q, Wen J X, Ye L H, Wu D L, Zhang X Y 2023 IEEE Antennas Wirel. Propag. Lett. 22 2310Google Scholar

    [20]

    Kuosmanen M, Holopainen J, Ala-Laurinaho J, Kiuru T, Viikari V 2023 IEEE Trans. Antennas Propagat. 71 6546Google Scholar

    [21]

    Guo C G, Zhang Z, Fu X N, Wang J H 2023 IEEE Antennas Wirel. Propag. Lett. 22 1793Google Scholar

    [22]

    Ma T C, Dang Q H, Fumeaux C, Nguyen-Trong N 2024 IEEE Trans. Antennas Propagat. 72 2998Google Scholar

    [23]

    Tewari N, Dadel M, Srivastava S 2023 In 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). pp 1–5

    [24]

    Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Open J. Antennas Propag. 2 759Google Scholar

    [25]

    邹晓鋆, 许旭光, 康国钦, 朱航, 谭铭, 宋伟 2023 电子与信息学报 45 3973Google Scholar

    [26]

    Mandal M K, Sanyal S 2006 IEEE Microw. Wirel. Compon. Lett. 16 597Google Scholar

    [27]

    Lu J C, Liao C K, Chang C Y 2008 Trans. Microw. Theory Tech. 56 2101Google Scholar

    [28]

    Tu W H 2010 IEEE Microw. Wirel. Compon. Lett. 20 208Google Scholar

    [29]

    冯丽君 2022 硕士学位论文 (四川: 电子科技大学)

    Yang K H 2022 M.S. Thesis

    [30]

    March S L 1985 Trans. Microw. Theory Tech. 3 269

    [31]

    Xu J, Wu W, Kang W, Miao C 2012 IEEE Microw. Wirel. Compon. Lett. 22 351Google Scholar

    [32]

    Wan F, Wu L, Ravelo B, Ge J 2020 IEEE Trans. Electromagn Compat. 62 1813Google Scholar

    [33]

    Jiang W, Che W 2012 IEEE Antennas Wirel. Propag. Lett. 11 293Google Scholar

  • [1] Zhang Zan, Huang Bei-Ju, Chen Hong-Da. Computational reconstruction on-chip spectrometer based on reconfigurable silicon photonic filters. Acta Physica Sinica, doi: 10.7498/aps.73.20240224
    [2] Liu Yu-Hang, Lin Tong, Li Shao-Bo, Yu Wen-Qi, Ma Xiang, Liang Xiao-Dong, Yun Bin-Feng. Reconfigurable optical filter based on microring resonator assisted by tunable Sagnac reflector. Acta Physica Sinica, doi: 10.7498/aps.72.20222384
    [3] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, doi: 10.7498/aps.71.20221256
    [4] Li Chuan-Gang, Ju Tao, Zhang Li-Guo, Li Yang, Zhang Xuan, Qin Juan, Zhang Bao-Shun, Zhang Ze-Hong. Growth of 4H-SiC recombination-enhancing buffer layer with Ti and N co-doping and improvement of forward voltage stability of PiN diodes. Acta Physica Sinica, doi: 10.7498/aps.70.20200921
    [5] Wang Cheng, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Millimeter-wave half-waveplate based on field transformation. Acta Physica Sinica, doi: 10.7498/aps.67.20171774
    [6] Wang Xiang, Chen Lei-Lei, Cao Yan-Rong, Yang Qun-Si, Zhu Pei-Min, Yang Guo-Feng, Wang Fu-Xue, Yan Da-Wei, Gu Xiao-Feng. Physical model of conductive dislocations in GaN Schottky diodes. Acta Physica Sinica, doi: 10.7498/aps.67.20180762
    [7] Zhang Xin, Zhang Yun-Chuan, Li Jian, Li Ren-Jie, Song Qing-Kun, Zhang Jia-Le, Fan Li. Research and design of continuous-wave Nd:YVO4 self-Raman laser in-band pumped by a wavelength-locked laser diode. Acta Physica Sinica, doi: 10.7498/aps.66.194203
    [8] Niu Ming-Sheng, Wang Gui-Shi. The research of δ13CO2 by use of wavelet de-noising at 2.008 μm based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.66.024202
    [9] Xia Bu-Gang, Zhang De-Hai, Meng Jin, Zhao Xin. Restrain the spurious resonance of second-order fractal frequency selective surface in MMW band. Acta Physica Sinica, doi: 10.7498/aps.62.174103
    [10] Cui Guang-Bin, Miao Jun-Gang, Zhang Yong-Fang. Design of waveguide array frequency selective surface filter in sub-millimeter wave band. Acta Physica Sinica, doi: 10.7498/aps.61.224102
    [11] Mo Qiu-Yan, Zhao Yan-Li. Frequency responses of communication avalanche photodiodes. Acta Physica Sinica, doi: 10.7498/aps.60.072902
    [12] Chen Qian, Jiang Jian-Jun, Bie Shao-Wei, Wang Peng, Liu Peng, Xu Xin-Xin. Tunable composite absorber with active frequency selective surface. Acta Physica Sinica, doi: 10.7498/aps.60.074202
    [13] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, doi: 10.7498/aps.58.919
    [14] Liu Huan, Gong Ma-Li. Compact laser diode end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, doi: 10.7498/aps.58.7000
    [15] Zhang Yong-Hui, Chang An-Bi, Xiang Fei, Song Fa-Lun, Kang Qiang, Luo Min, Li Ming-Jia, Gong Sheng-Gang. Repetition rate of intense current electron-beam diodes using 20 GW pulsed source. Acta Physica Sinica, doi: 10.7498/aps.56.5754
    [16] DONG RUI-FANG, ZHANG JUN-XIANG, ZHANG TIAN-CAI, ZHANG JING, XIE CHANG-DE, PENG KUN-CHI. INTENSITY NOISE SQUEEZING OF LASER DIODE WITH INPHASE EXTERNAL WEAK FEEDBACK BY HALF WAVE PLATE. Acta Physica Sinica, doi: 10.7498/aps.50.462
    [17] WANG JUN-HONG. PHYSICAL PROCEDURES OF THE PULSE RADIATION FROM THE DIPOLE ANTENNAS AND ITS NUMERICAL SIMULATION. Acta Physica Sinica, doi: 10.7498/aps.48.850
    [18] Wu Bai-Mei, Jiang Ke-Han, Wang Dong-Jin, Sheng Yi-Jian, Du Ying-Lei. . Acta Physica Sinica, doi: 10.7498/aps.44.646
    [19] SHIUH GEN-TWEN, CHUO CHI-TSANG. THE SERIES RESISTANCE AND CUTOFF FREQUENCY OF DIFFUSED PARAMETRIC DIODE. Acta Physica Sinica, doi: 10.7498/aps.20.327
    [20] SHIUH GEN-TWEN, CHUO CHI-TSANG. THE SERIES RESISTANCE AND CUTOFF FREQUENCY OF DOUBLE DIFFUSED PARAMETRIC DIODE. Acta Physica Sinica, doi: 10.7498/aps.20.540
Metrics
  • Abstract views:  171
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  27 November 2024

/

返回文章
返回