Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on structure and electrical properties of [0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3] ceramics

GUO Yunfeng WANG Junxian WANG Zexing LI Jiamao CHEN Liming

Citation:

Influence of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on structure and electrical properties of [0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3] ceramics

GUO Yunfeng, WANG Junxian, WANG Zexing, LI Jiamao, CHEN Liming
cstr: 32037.14.aps.74.20240833
PDF
HTML
Get Citation
  • Sodium niobate-based dielectric energy storage materials, as key components in capacitors, have the advantages such as low relative density, lead-free, low cost, and excellent energy storage density, and can meet the important requirements of electronic components for miniaturization, harmlessness, integration and light weight. Therefore, they have received extensive attention from the scientific community in recent years. In this work, by introducing both Bi(Mg0.5Sn0.5)O3 and (Bi0.5Na0.5)0.7Sr0.3TiO3 components into NaNbO3 ceramics, a conventional solid-phase sintering method is used to prepare (1–x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 (Abbreviated as (1–x)(NN-BMS)-xBNST, 0 ≤ x ≤ 0.3) relaxation ferroelectric ceramics, and the ceramics are characterized by using X-ray diffraction, scanning electron microscopy, UV spectroscopy and Raman spectroscopy so as to study the effects of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on the physical phase composition, microstructure, and electrical properties of NaNbO3 ceramics, such as dielectric and energy storage. The (1–x)(NN-BMS)-xBNST ceramics exhibit a single perovskite structure, with cell volume a first increasing and then decreasing. The coexistence of Pbma and Pnma phases (1–x)(NN-BMS)-xBNST ceramics exhibits a dense microstructure and clear grain boundaries at an optimal sintering temperature. The average grain size first increases to 4.73 μm, then decreases to 2.17 μm, and finally increases to 3.06 μm. A smaller grain size and a larger bandgap width are beneficial for improving the breakdown strength. The 0.75(NN-BMS)-0.25BNST ceramic shows the excellent dielectric temperature stability (25–160 ℃, Δε/ε25 ℃ ≤ ±15%) and dielectric frequency stability, which can meet the EIAZ8U standard and hence work in a special environment (high temperature and high frequency). Meanwhile, 0.75(NN-BMS)-0.25BNST ceramic exhibits excellent energy storage performance at high field strength (390 kV/cm): recoverable energy density Wrec = 2.73 J/cm3, energy storage efficiency η = 82.6%, and high temperature stability in a temperature range of 20–100 ℃. The research results indicate that 0.75(NN-BMS)-0.25BNST ceramics have broad prospects of applications in lead-free dielectric energy storage capacitors.
      Corresponding author: LI Jiamao, lijiamao@ahut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2019A0054).
    [1]

    杨敏铮, 江建勇, 沈洋 2021 硅酸盐学报 49 1249Google Scholar

    Yang M Z, Jiang J Y, Shen Y 2021 J. Chin. Ceram. Soc. 49 1249Google Scholar

    [2]

    Yang F, Pan Z B, Ling Z Q, Hu D, Ding J, Li P, Liu J J, Zhai J W 2021 J. Eur. Ceram. Soc. 41 2548

    [3]

    Li S, Nie H C, Wang G S, Xu C H, Liu N T, Zhou M X, Cao F, Dong X L 2019 J. Mater. Chem. C 7 1551Google Scholar

    [4]

    Zou K L, Dan Y, Xu H J, Zhang Q F, Lu Y M, Huang H T, He Y B 2019 Mater. Res. Bull. 113 190Google Scholar

    [5]

    沈忠慧, 江彦达, 李宝文, 张鑫 2020 物理学报 69 217706Google Scholar

    Shen Z H, Jiang Y D, Li B W, Zhang X 2020 Acta Phys. Sin. 69 217706Google Scholar

    [6]

    Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018 ACS Sustain. Chem. Eng. 6 12755Google Scholar

    [7]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [8]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 113Google Scholar

    [9]

    张天富, 司洋洋, 黎意杰, 陈祖煌 2023 物理学报 72 097704Google Scholar

    Zhang T F, Si Y Y, Li Y J, Chen Z H 2023 Acta Phys. Sin. 72 097704Google Scholar

    [10]

    Yu Z L, Liu Y F, Shen M Y, Qian H, Li F F, Lü Y N 2017 Ceram. Int. 43 7653Google Scholar

    [11]

    Yao F Z, Yuan Q, Wang Q, Wang H 2020 Nanoscale 12 17165Google Scholar

    [12]

    Li D X, Zeng X J, Li Z P, Shen Z Y, Hao H, Luo W Q, Wang X C, Song F S, Wang Z M, Li Y M 2021 J. Adv. Ceram. 10 675Google Scholar

    [13]

    Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026.Google Scholar

    [14]

    郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良 2023 物理学报 72 177801Google Scholar

    Zheng M, Yang J, Zhang Y X, Guan P F, Cheng A, Fan H L 2023 Acta Phys. Sin. 72 177801Google Scholar

    [15]

    Liang C, Wang C Y, Zhao H Y, Cao W J, Li F, Wang C C 2023 J. Alloys Compd. 961 170962Google Scholar

    [16]

    Ye J M, Wang G S, Chen X F, Dong X L 2021 J. Materiomics 7 339

    [17]

    Chen J, Qi H, Zuo R Z 2020 ACS Appl. Mater. Inter. 12 32871Google Scholar

    [18]

    Wada T, Tsuji K, Saito T, Matsuo Y 2003 Jpn. J. Appl. Phys. 42 6110Google Scholar

    [19]

    Qi H, Zuo R Z 2019 J. Mater. Chem. A. 7 3971Google Scholar

    [20]

    Pang F H, Chen X L, Sun C C, Shi J P, Li X, Chen H Y, Dong X Y, Zhou H F 2020 ACS Sustain. Chem. Eng. 8 14985Google Scholar

    [21]

    Xu Z Q, Liu Z, Dai K, Lu T, Lü Z Q, Hu Z G, Liu Y, Wang G S 2022 J. Mater. Chem. A. 10 13907Google Scholar

    [22]

    郭云凤, 王俊贤, 王泽星, 李家茂, 刘畅 2024 化学学报 82 511Google Scholar

    Guo Y F, Wang J X, Wang Z X, Li J M, Liu C 2024 Acta Chim. Sinica. 82 511Google Scholar

    [23]

    Pang F H, Chen X L, Shi J P, Sun C C, Chen H Y, Dong X Y, Zhou H F 2021 ACS Sustain. Chem. Eng. 9 4863Google Scholar

    [24]

    Shannon R D 1979 Acta Cryst. A 32 751

    [25]

    Zhang S Y, Li W H, Zhang Y S, Tang X G, Jiang Y P, Guo X B 2023 Results Phys. 44 106194Google Scholar

    [26]

    Chen H Y, Wang X, Dong X Y, Pan Y, Wang J M, Deng L, Dong Q P, Zhang H L, Zhou H F, Chen X L 2022 ACS Appl. Mater. Inter. 14 25609Google Scholar

    [27]

    Dong X Y, Li X, Chen X L, Tan Z, Wu J G, Zhu J G, Zhou H F 2022 Nano Energy 101 107577Google Scholar

    [28]

    Chen X L, Li X, Sun J, Sun C C, Shi J P, Pang F H, Zhou H F 2020 Ceram. Int. 46 2764Google Scholar

    [29]

    Han K, Luo N N, Chen Z P, Ma L, Chen X L, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562Google Scholar

    [30]

    Yan F, Bai H R, Shi Y J, Ge G L, Zhou X F, Lin J F, Shen B, Zhai J W 2021 Chem. Eng. J. 425 130669Google Scholar

    [31]

    Shi J P, Chen X L, Li X, Sun J, Sun C C, Pang F H, Zhou H F 2020 J. Mater. Chem. C 8 3784Google Scholar

    [32]

    Cao W J, Lin R J, Chen P F, Li F, Ge B H, Song D S, Zhang J, Cheng Z X, Wang C C 2022 ACS Appl. Mater. Inter. 14 54051Google Scholar

    [33]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C. 6 10693Google Scholar

    [34]

    Shen Y H, Wu L K, Zhao J H, Liu J J, Tang L M, Chen X Q, Li H H, Su Z, Zhang Y, Zhai J W, Pan Z B 2022 Chem. Eng. J. 439 135762Google Scholar

    [35]

    Nie X R, He Y, Shi Q Q, Liang Y Q, Wei L L, Liang P F, Chao X L, Hu G X, Yang Z P 2023 J. Adv. Dielect. 13 2242005Google Scholar

    [36]

    杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703Google Scholar

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703Google Scholar

    [37]

    Wei K, Duan J H, Zhou X F, Li G S, Zhang D, Li H 2023 ACS Appl. Mater. Inter. 15 48354Google Scholar

  • 图 1  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷实物样品图

    Figure 1.  Physical photo of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics.

    图 2  (a) (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷在最佳烧结温度下的XRD图; (b) (100)衍射峰峰位放大图; (c) (110)衍射峰峰位放大图; (d) (200)衍射峰峰位放大图

    Figure 2.  (a) XRD patterns of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics at optimal sintering temperature; (b) enlarged image of (100) diffraction peak; (c) enlarged image of (110) diffraction peak; (d) enlarged image of (200) diffraction peak

    图 3  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷的XRD图谱的Rietveld精修结果 (a) x = 0; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30

    Figure 3.  Rietveld refinement results of XRD patterns of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics: (a) x = 0; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30.

    图 4  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷在最佳烧结温度下的SEM图 (a) x = 0; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30. (g) (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷的平均晶粒尺寸

    Figure 4.  SEM images of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics at optimal sintering temperature: (a) x = 0; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30. (g) Average grain size of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics.

    图 5  (a) 0.75(NN-BMS)-0.25BNST陶瓷的EDS能谱图, 插图为SEM图; (b)—(i) EDS元素面扫描图

    Figure 5.  (a) EDS spectrum of 0.75(NN-BMS)-0.25BNST ceramic, the illustration shows SEM image; (b)–(i) EDS element surface scanning image.

    图 6  (a) 0.75(NN-BMS)-0.25BNST陶瓷的紫外吸收光谱; (b) 相应的Tauc plot图

    Figure 6.  (a) UV absorption spectra of 0.75(NN-BMS)-0.25BNST ceramic; (b) corresponding Tauc plot.

    图 7  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷的拉曼光谱图

    Figure 7.  Raman spectroscopy of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics.

    图 8  (1–x)(NN-BMS)–xBNST (0 ≤ x ≤ 0.30)陶瓷的介电温谱图 (a) x = 0; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30. (g) 0.75(NN-BMS)-0.25BNST陶瓷在不同频率下与温度相关的介电常数变化率

    Figure 8.  Dielectric temperature spectra of (1–x)(NN-BMS)–xBNST (0 ≤ x ≤ 0.30) ceramics: (a) x = 0; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30. (g) Temperature dependent dielectric constant change rate of 0.75(NN-BMS)-0.25BNST ceramic at different frequencies.

    图 9  (1–x)(NN-BMS)–xBNST (0 ≤ x ≤ 0.30)陶瓷的介电频谱图

    Figure 9.  Dielectric frequency spectra of (1–x)(NN-BMS)–xBNST (0 ≤ x ≤ 0.30) ceramics.

    图 10  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷 (a) 不同组分下的单极P-E环; (b) 不同组分下的 Pmax, Pr 及 ΔP; (c) 不同组分下的电场强度; (d) 不同组分下的储能性能

    Figure 10.  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics: (a) Unipolar P-E circuits under different components; (b) Pmax, Pr and ΔP under different components; (c) electric field strength under different components; (d) energy storage properties under different components.

    图 11  0.75(NN-BMS)-0.25BNST陶瓷 (a) 不同场强下的P-E环; (b) 不同场强下的Pmax, Pr及ΔP; (c) 电场和储能性能的关系

    Figure 11.  0.75(NN-BMS)-0.25BNST ceramic: (a) P-E circuits under different field strengths; (b) Pmax, Pr and ΔP under different field strengths; (c) relationship between electric field and energy storage performance.

    图 12  0.75(NN-BMS)-0.25BNST陶瓷 (a) 不同温度下的P-E环; (b) 不同温度下的Wrecη

    Figure 12.  0.75(NN-BMS)-0.25BNST ceramic: (a) P-E circuits at different temperatures; (b) Wrec and η at different temperatures.

    表 1  (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30)陶瓷的Rietveld精修结构参数

    Table 1.  Rietveld refined structural parameters of (1–x)(NN-BMS)-xBNST (0 ≤ x ≤ 0.30) ceramics.

    x Phase Volume fraction/% Lattice parameters/Å V3 Rwp/% Rp/% χ2
    a b c
    0 Pnma 99.84 7.82(8) 7.82(8) 7.82(8) 479.73(5) 7.64 5.65 7.42
    Pbma 0.16 5.56(8) 15.74(7) 5.54(7) 486.44(1)
    0.10 Pnma 67.2 7.82(3) 7.82(9) 7.83(4) 479.87(3) 5.47 4.18 3.71
    Pbma 32.8 5.54(5) 15.60(9) 5.52(1) 478.00(0)
    0.15 Pnma 63.3 7.82(3) 7.82(9) 7.83(5) 479.89(9) 5.59 4.43 3.85
    Pbma 36.7 5.55(0) 15.62(9) 5.52(9) 479.66(5)
    0.20 Pnma 53.1 7.82(0) 7.82(6) 7.83(5) 479.59(3) 5.04 3.82 2.89
    Pbma 46.9 5.54(5) 15.63(5) 5.53(9) 480.26(4)
    0.25 Pnma 57.1 7.82(1) 7.82(8) 7.83(5) 479.77(9) 5.39 4.21 3.27
    Pbma 42.9 5.42(1) 15.66(4) 5.53(2) 480.28(9)
    0.30 Pnma 65.65 7.82(1) 7.82(7) 7.83(5) 479.70(5) 5.04 3.92 2.41
    Pbma 34.35 5.53(8) 15.60(1) 5.52(4) 477.28(3)
    DownLoad: CSV
  • [1]

    杨敏铮, 江建勇, 沈洋 2021 硅酸盐学报 49 1249Google Scholar

    Yang M Z, Jiang J Y, Shen Y 2021 J. Chin. Ceram. Soc. 49 1249Google Scholar

    [2]

    Yang F, Pan Z B, Ling Z Q, Hu D, Ding J, Li P, Liu J J, Zhai J W 2021 J. Eur. Ceram. Soc. 41 2548

    [3]

    Li S, Nie H C, Wang G S, Xu C H, Liu N T, Zhou M X, Cao F, Dong X L 2019 J. Mater. Chem. C 7 1551Google Scholar

    [4]

    Zou K L, Dan Y, Xu H J, Zhang Q F, Lu Y M, Huang H T, He Y B 2019 Mater. Res. Bull. 113 190Google Scholar

    [5]

    沈忠慧, 江彦达, 李宝文, 张鑫 2020 物理学报 69 217706Google Scholar

    Shen Z H, Jiang Y D, Li B W, Zhang X 2020 Acta Phys. Sin. 69 217706Google Scholar

    [6]

    Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018 ACS Sustain. Chem. Eng. 6 12755Google Scholar

    [7]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [8]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 113Google Scholar

    [9]

    张天富, 司洋洋, 黎意杰, 陈祖煌 2023 物理学报 72 097704Google Scholar

    Zhang T F, Si Y Y, Li Y J, Chen Z H 2023 Acta Phys. Sin. 72 097704Google Scholar

    [10]

    Yu Z L, Liu Y F, Shen M Y, Qian H, Li F F, Lü Y N 2017 Ceram. Int. 43 7653Google Scholar

    [11]

    Yao F Z, Yuan Q, Wang Q, Wang H 2020 Nanoscale 12 17165Google Scholar

    [12]

    Li D X, Zeng X J, Li Z P, Shen Z Y, Hao H, Luo W Q, Wang X C, Song F S, Wang Z M, Li Y M 2021 J. Adv. Ceram. 10 675Google Scholar

    [13]

    Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026.Google Scholar

    [14]

    郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良 2023 物理学报 72 177801Google Scholar

    Zheng M, Yang J, Zhang Y X, Guan P F, Cheng A, Fan H L 2023 Acta Phys. Sin. 72 177801Google Scholar

    [15]

    Liang C, Wang C Y, Zhao H Y, Cao W J, Li F, Wang C C 2023 J. Alloys Compd. 961 170962Google Scholar

    [16]

    Ye J M, Wang G S, Chen X F, Dong X L 2021 J. Materiomics 7 339

    [17]

    Chen J, Qi H, Zuo R Z 2020 ACS Appl. Mater. Inter. 12 32871Google Scholar

    [18]

    Wada T, Tsuji K, Saito T, Matsuo Y 2003 Jpn. J. Appl. Phys. 42 6110Google Scholar

    [19]

    Qi H, Zuo R Z 2019 J. Mater. Chem. A. 7 3971Google Scholar

    [20]

    Pang F H, Chen X L, Sun C C, Shi J P, Li X, Chen H Y, Dong X Y, Zhou H F 2020 ACS Sustain. Chem. Eng. 8 14985Google Scholar

    [21]

    Xu Z Q, Liu Z, Dai K, Lu T, Lü Z Q, Hu Z G, Liu Y, Wang G S 2022 J. Mater. Chem. A. 10 13907Google Scholar

    [22]

    郭云凤, 王俊贤, 王泽星, 李家茂, 刘畅 2024 化学学报 82 511Google Scholar

    Guo Y F, Wang J X, Wang Z X, Li J M, Liu C 2024 Acta Chim. Sinica. 82 511Google Scholar

    [23]

    Pang F H, Chen X L, Shi J P, Sun C C, Chen H Y, Dong X Y, Zhou H F 2021 ACS Sustain. Chem. Eng. 9 4863Google Scholar

    [24]

    Shannon R D 1979 Acta Cryst. A 32 751

    [25]

    Zhang S Y, Li W H, Zhang Y S, Tang X G, Jiang Y P, Guo X B 2023 Results Phys. 44 106194Google Scholar

    [26]

    Chen H Y, Wang X, Dong X Y, Pan Y, Wang J M, Deng L, Dong Q P, Zhang H L, Zhou H F, Chen X L 2022 ACS Appl. Mater. Inter. 14 25609Google Scholar

    [27]

    Dong X Y, Li X, Chen X L, Tan Z, Wu J G, Zhu J G, Zhou H F 2022 Nano Energy 101 107577Google Scholar

    [28]

    Chen X L, Li X, Sun J, Sun C C, Shi J P, Pang F H, Zhou H F 2020 Ceram. Int. 46 2764Google Scholar

    [29]

    Han K, Luo N N, Chen Z P, Ma L, Chen X L, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562Google Scholar

    [30]

    Yan F, Bai H R, Shi Y J, Ge G L, Zhou X F, Lin J F, Shen B, Zhai J W 2021 Chem. Eng. J. 425 130669Google Scholar

    [31]

    Shi J P, Chen X L, Li X, Sun J, Sun C C, Pang F H, Zhou H F 2020 J. Mater. Chem. C 8 3784Google Scholar

    [32]

    Cao W J, Lin R J, Chen P F, Li F, Ge B H, Song D S, Zhang J, Cheng Z X, Wang C C 2022 ACS Appl. Mater. Inter. 14 54051Google Scholar

    [33]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C. 6 10693Google Scholar

    [34]

    Shen Y H, Wu L K, Zhao J H, Liu J J, Tang L M, Chen X Q, Li H H, Su Z, Zhang Y, Zhai J W, Pan Z B 2022 Chem. Eng. J. 439 135762Google Scholar

    [35]

    Nie X R, He Y, Shi Q Q, Liang Y Q, Wei L L, Liang P F, Chao X L, Hu G X, Yang Z P 2023 J. Adv. Dielect. 13 2242005Google Scholar

    [36]

    杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703Google Scholar

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703Google Scholar

    [37]

    Wei K, Duan J H, Zhou X F, Li G S, Zhang D, Li H 2023 ACS Appl. Mater. Inter. 15 48354Google Scholar

  • [1] Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu. Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films. Acta Physica Sinica, 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [2] Song Xiao-Fan, Min Dao-Min, Gao Zi-Wei, Wang Po-Xin, Hao Yu-Tao, Gao Jing-Hui, Zhong Li-Sheng. Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric. Acta Physica Sinica, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [3] Huang Jian-Bang, Nan Hu, Zhang Feng, Zhang Jia-Le, Liu Lai-Jun, Wang Da-Wei. Diffuse phase transition and thermal hysteresis in relaxor ferroelectrics from modified Ising model. Acta Physica Sinica, 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [4] Xing Jie, Tan Zhi, Zheng Ting, Wu Jia-Gang, Xiao Ding-Quan, Zhu Jian-Guo. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [5] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [6] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [7] Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan, Zhai Ji-Wei. Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [8] Du Jin-Hua, Li Yong, Sun Ning-Ning, Zhao Ye, Hao Xi-Hong. Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta Physica Sinica, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [9] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [10] Tang Hui, Tang Xin-Gui, Jiang Yan-Ping, Liu Qiu-Xiang, Li Wen-Hua. Oxygen vacancy effect on ionic conductivity and relaxation phenomenon of SrxBa1–xNb2O6 ceramics. Acta Physica Sinica, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [11] Cai Jia-Huan, Li Ping, Wen Yu-Mei, Bao Yi-Zhuang, Liu Shuang-Jian. Characteristics of quartz crystal energy storage. Acta Physica Sinica, 2016, 65(10): 104205. doi: 10.7498/aps.65.104205
    [12] Qu Shao-Hua, Cao Wan-Qiang. Research on polarization effect for relaxor ferroelectrics by spherical random bond-random field model. Acta Physica Sinica, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [13] Cao Wan-Qiang, Shu Ming-Fei. Bond energy and coordination number model for relaxor ferroelectrics. Acta Physica Sinica, 2013, 62(1): 017701. doi: 10.7498/aps.62.017701
    [14] Yu Yang, Mi Zeng-Qiang. Nonlinear dynamic model and chaotic characteristics of mechanical thastic energy storage unit in energy storage process. Acta Physica Sinica, 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [15] Chen Wei, Cao Wan-Qiang. Study on glassy characteristics of dispersion transition in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [16] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [17] Shang Xun-Zhong, Chen Wei, Cao Wan-Qiang. Research on dielectric tunability of relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [18] Song Xue-Ping, Zhang Yong-Guang, Luo Xiao-Jing, Xu Ling-Fang, Cao Wan-Qiang, Yang Chang-Ping. Relaxor ferroelectricity of (1-x)(K0.5Na0.5)NbO3-xSrTiO3 ceramics. Acta Physica Sinica, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [19] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [20] CHENG ZHONG-YANG, YAO XI, ZHANG LIANG-YING. GLASSY BEHAVIOR IN LEAD MAG-NESIUM NIOBATE RELAXORS. Acta Physica Sinica, 1996, 45(6): 1026-1032. doi: 10.7498/aps.45.1026
Metrics
  • Abstract views:  360
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2024
  • Accepted Date:  26 November 2024
  • Available Online:  29 November 2024
  • Published Online:  05 January 2025

/

返回文章
返回