-
Piezoelectric ceramics, as a kind of functional material, can realize the mutual transformation between mechanical energy and electrical energy, and has been widely used in civil and military fields. With the improvement of people's awareness of environment protection and self-health care, the study of lead-free piezoelectric ceramics with excellent performance and environmental friendliness has become an urgent task. Among several kinds of lead-free piezoelectric materials, potassium sodium niobate [(K, Na)NbO3, KNN]-based ceramics has attracted much attention due to its good comprehensive properties, but there have been carried out few studies focusing on the utilization of phase boundary to regulate the properties of high piezoelectric and electrocaloric effect simultaneously. In this work, lead-free 0.944K0.48Na0.52Nb0.95Sb0.05O3 -0.04Bi0.5(Na0.82K0.18)0.5ZrO3-1.6%(AgxNa1–x)SbO3-0.4%Fe2O3 ceramics is prepared via the conventional solid-state method, and the effect of AS/NS ratio on phase structure, electrical properties, and electrocaloric effect are studied. The obtained results show that the ceramics has a multiphase coexistence with “rhombohedral-orthorhombic-tetragonal” (R-O-T) in all compositions. With the increase of AS content, the piezoelectric and ferroelectric properties of the ceramics fluctuate (d33 = 518–563 pC/N, kp = 0.45–0.56; Pmax = 21–23 μC/cm2, Pr = 14–17 μC/cm2). In addition, the electrocaloric effect (ECE) for each of the samples is studied by the indirect method. Broadening temperature span (~90 K) of electrocaloric effect is obtained in the vicinity of O-T phase transition region, while a low ECE value is observed. A stronger ECE peak (ΔTmax > 0.6 K) can be observed when the measurement temperature reaches near the Curie temperature. Consequently, both large piezoelectric property and high electrocaloric performance can be realized in KNN-based ceramics by new phase boundary construction.
[1] 吴家刚 2019 四川师范大学学报(自然科学版) 42 143Google Scholar
Wu J G 2019 J. Sichuan Normal Univ. (Nat. Sci.) 42 143Google Scholar
[2] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[3] Wang X P, Wu J G, Xiao D Q, et al. 2014 J. Am. Chem. Soc. 136 2905Google Scholar
[4] Xu K, Li J, Lü X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar
[5] Tao H, Wu H J, Liu Y, et al. 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[6] Yuan Y, Wu J G, Tao H, Lü X, Wang X J, Lou X J 2015 J. Appl. Phys. 117 084103Google Scholar
[7] Zheng T, Wu H J, Yuan Y, et al. 2017 Energy Environ Sci. 10 528Google Scholar
[8] Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677Google Scholar
[9] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar
[10] Saranya D, Chaudhuri A R, Parui J, Krupanidhi S B 2009 Bull. Mater. Sci. 32 259Google Scholar
[11] Peng B L, Fan H Q, Zhang Q 2013 Adv. Funct. Mater. 23 2987Google Scholar
[12] Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q, Guo D 2011 J. Appl. Phys. 110 094103Google Scholar
[13] Jiang X J, Luo L H, Wang B Y, Li W P, Chen H B 2014 Ceram. Int. 40 2627Google Scholar
[14] Kumar S, Singh S 2019 J. Mater. Sci.: Mater. Electron. 30 12924Google Scholar
[15] Novak N, Pirc R, Kutnjak Z 2014 International Workshop on Relaxor Ferroelectrics St. Petersburg, Russia, July 1−6, 2013 p61
[16] Qian X S, Ye H J, Zhang Y T, Gu H M, Li X Y, Randall C A, Zhang Q M 2014 Adv. Funct. Mater. 24 1300Google Scholar
[17] 白洋, 李建厅, 秦士强, 李俊杰, 苏小坡, 李中华, 殷若伟, 乔利杰, 王雨 2018 现代技术陶瓷 39 369Google Scholar
Bai Y, Li J T, Qin S Q, Li J J, Su X P, Li Z H, Yin R W, Qiao L J, Wang Y 2018 Advanced Ceramics 39 369Google Scholar
[18] Rozic B, Kosec M, Ursic H, Holc J, Malic B, Zhang Q M, Blinc R, Pirc R, Kutnjak Z 2011 J. Appl. Phys. 110 064118Google Scholar
[19] Damjanovic D 2010 Appl. Phys. Lett. 97 62906Google Scholar
[20] Wu J G 2018 Advances in Lead-free Piezoelectric Materials (Singapore: Springer Nature) pp412−417
[21] Setter N, Cross L E 1980 J. Mater. Sci. 15 2478Google Scholar
[22] Lü X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar
[23] Rubio-Marcos F, Banares M A, Romeroa J J, Fernandez J F 2011 J. Raman Spectrosc. 42 639Google Scholar
[24] Valant M 2012 Prog. Mater. Sci. 57 980Google Scholar
[25] Wang X J, Wu J G, Dkhil B, Xu B X, Wang X P, Dong G H, Yang G, Lou X J 2017 Appl. Phys. Lett. 110 063904Google Scholar
[26] Zheng T, Wu J G 2016 ACS Appl. Mater. Interfaces 8 9242Google Scholar
[27] 张沛霖, 钟维烈 1992 物理 20 600
Zhang P L, Zhong W L 1992 Physics 20 600
[28] 聂鑫 2018 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)
Nie X 2018 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, University of Chinese Academy of Sciences) (in Chinese)
[29] Rozic B, Koruza J, Kutnjak Z, Cordoyiannis G, Malic B, Kosec M 2013 Ferroelectrics 446 39Google Scholar
[30] Yang J L, Hao X H 2019 J. Am. Ceram. Soc. 102 6817Google Scholar
[31] Yu Y, Gao F, Weyland F, Du H L, Jin L, Hou L, Yang Z T, Novak N, Qu S B 2019 J. Mater. Chem. A 7 11665Google Scholar
[32] Li J T, Bai Y, Qin S Q, Fu J, Zuo R Z, Qiao L J 2016 Appl. Phys. Lett. 109 162902Google Scholar
[33] Tao H, Yang J L, Lü X, Hao X H, Wu J G 2019 J. Am. Ceram Soc. 102 2578Google Scholar
-
图 3 (a) KNNS-BNKZ-AxN1–xS-Fe陶瓷各组分的拉曼光谱; (b) x = 0组分的ν1和ν2特征峰拟合图; (c) ν1振动模式的拉曼位移; (d) ν1振动模式的半高宽随组分的变化
Figure 3. (a) Raman spectra of KNNS-BNKZ-AxN1–xS-Fe; (b) Gaussian fitting of Raman spectra for x = 0; (c) Raman shift of v1 mode; (d) full width at half maximum (FWHM) as a function of composition at v1 mode.
-
[1] 吴家刚 2019 四川师范大学学报(自然科学版) 42 143Google Scholar
Wu J G 2019 J. Sichuan Normal Univ. (Nat. Sci.) 42 143Google Scholar
[2] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar
[3] Wang X P, Wu J G, Xiao D Q, et al. 2014 J. Am. Chem. Soc. 136 2905Google Scholar
[4] Xu K, Li J, Lü X, Wu J G, Zhang X X, Xiao D Q, Zhu J G 2016 Adv. Mater. 28 8519Google Scholar
[5] Tao H, Wu H J, Liu Y, et al. 2019 J. Am. Chem. Soc. 141 13987Google Scholar
[6] Yuan Y, Wu J G, Tao H, Lü X, Wang X J, Lou X J 2015 J. Appl. Phys. 117 084103Google Scholar
[7] Zheng T, Wu H J, Yuan Y, et al. 2017 Energy Environ Sci. 10 528Google Scholar
[8] Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677Google Scholar
[9] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar
[10] Saranya D, Chaudhuri A R, Parui J, Krupanidhi S B 2009 Bull. Mater. Sci. 32 259Google Scholar
[11] Peng B L, Fan H Q, Zhang Q 2013 Adv. Funct. Mater. 23 2987Google Scholar
[12] Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q, Guo D 2011 J. Appl. Phys. 110 094103Google Scholar
[13] Jiang X J, Luo L H, Wang B Y, Li W P, Chen H B 2014 Ceram. Int. 40 2627Google Scholar
[14] Kumar S, Singh S 2019 J. Mater. Sci.: Mater. Electron. 30 12924Google Scholar
[15] Novak N, Pirc R, Kutnjak Z 2014 International Workshop on Relaxor Ferroelectrics St. Petersburg, Russia, July 1−6, 2013 p61
[16] Qian X S, Ye H J, Zhang Y T, Gu H M, Li X Y, Randall C A, Zhang Q M 2014 Adv. Funct. Mater. 24 1300Google Scholar
[17] 白洋, 李建厅, 秦士强, 李俊杰, 苏小坡, 李中华, 殷若伟, 乔利杰, 王雨 2018 现代技术陶瓷 39 369Google Scholar
Bai Y, Li J T, Qin S Q, Li J J, Su X P, Li Z H, Yin R W, Qiao L J, Wang Y 2018 Advanced Ceramics 39 369Google Scholar
[18] Rozic B, Kosec M, Ursic H, Holc J, Malic B, Zhang Q M, Blinc R, Pirc R, Kutnjak Z 2011 J. Appl. Phys. 110 064118Google Scholar
[19] Damjanovic D 2010 Appl. Phys. Lett. 97 62906Google Scholar
[20] Wu J G 2018 Advances in Lead-free Piezoelectric Materials (Singapore: Springer Nature) pp412−417
[21] Setter N, Cross L E 1980 J. Mater. Sci. 15 2478Google Scholar
[22] Lü X, Wu J G, Zhu J G, Xiao D Q 2018 Phys. Chem. Chem. Phys. 20 20149Google Scholar
[23] Rubio-Marcos F, Banares M A, Romeroa J J, Fernandez J F 2011 J. Raman Spectrosc. 42 639Google Scholar
[24] Valant M 2012 Prog. Mater. Sci. 57 980Google Scholar
[25] Wang X J, Wu J G, Dkhil B, Xu B X, Wang X P, Dong G H, Yang G, Lou X J 2017 Appl. Phys. Lett. 110 063904Google Scholar
[26] Zheng T, Wu J G 2016 ACS Appl. Mater. Interfaces 8 9242Google Scholar
[27] 张沛霖, 钟维烈 1992 物理 20 600
Zhang P L, Zhong W L 1992 Physics 20 600
[28] 聂鑫 2018 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)
Nie X 2018 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, University of Chinese Academy of Sciences) (in Chinese)
[29] Rozic B, Koruza J, Kutnjak Z, Cordoyiannis G, Malic B, Kosec M 2013 Ferroelectrics 446 39Google Scholar
[30] Yang J L, Hao X H 2019 J. Am. Ceram. Soc. 102 6817Google Scholar
[31] Yu Y, Gao F, Weyland F, Du H L, Jin L, Hou L, Yang Z T, Novak N, Qu S B 2019 J. Mater. Chem. A 7 11665Google Scholar
[32] Li J T, Bai Y, Qin S Q, Fu J, Zuo R Z, Qiao L J 2016 Appl. Phys. Lett. 109 162902Google Scholar
[33] Tao H, Yang J L, Lü X, Hao X H, Wu J G 2019 J. Am. Ceram Soc. 102 2578Google Scholar
Catalog
Metrics
- Abstract views: 12367
- PDF Downloads: 610
- Cited By: 0