-
Due to the various risks caused by lead, the research of lead-free ferroelectric functional ceramics has been one of research hotspots recently. And relaxor ferroelectrics have an important position in materials for ceramic capacitor due to their low temperature change rate and large electrostrictive coefficient. However, the lead-free SrxBa1–xNb2O6 ceramic is a non-filled tungsten bronze structural material whose Curie temperature can be adjusted by changing the proportion of Sr composition. The increase of Sr concentration in ceramic can cause relaxor behavior and improve dielectric constant and ferroelectric properties. In this work, SrxBa1–xNb2O6 (x = 0.4, 0.5 and 0.6, abbreviated as SBN40, SBN50 and SBN60, respectively) ceramics are prepared by a high-temperature solid-state reaction process. The dielectric properties and the impedances of the SrxBa1–xNb2O6 ceramics are investigated in detail. It is worth noting that the high-temperature diffusion for the SrxBa1–xNb2O6 has not been studied before. Furthermore, the analysis of high-temperature dielectric behavior and impedance of lead-free functional ceramics is important for the application of functional ceramics in the high-temperature environment. The temperature of phase transition for SBN40, SBN50 and SBN60 are 401.15 K, 355.15 K, and 327.15 K, respectively, which are obtained from the modified Curie-Weiss law. The result shows that the increase of Sr composition leads the phase transition temperature from ferroelectric to paraelectric phase to decrease. In addition, the calculated value of diffusion phase transition parameter γ for SBN40, SBN50 and SBN60 are 1.53, 1.90 and 1.94, respectively, showing that it is close to an ideal relaxor ferroelectric with the Sr content increasing in SBN ceramics at low temperature. In addition, it is noticed that a similar diffusion appears in at high temperature. This phenomenon is unrelated to the phase transition, but it is corresponding to high temperature dielectric relaxation which is related to oxygen vacancy. As expected, the impedance spectroscopic data present a thermally activated relaxation phenomenon. Finally, activation energy for conduction and relaxation are calculated from the impedance and dielectric data through the Arrhenius law. Comparing the activation energy values for conduction and relaxation, it can be obviously concluded that the trap-controlled conduction process should be responsible for the relaxation process of sample. And the hopping of ions, caused by oxygen vacancies, plays a critical role in the dielectric relaxation process at high temperature.
-
Keywords:
- SrxBa1-xNb2O6 ceramic /
- diffusion phase transition /
- relaxor ferroelectric /
- oxygen vacancy
[1] Zhang Y, Xie M Y, Roscow J, Bao Y X, Zhou K C, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 6569Google Scholar
[2] Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar
[3] Zhang S J, Li F, Jiang X N, Kim J, Luo J, Geng X C 2015 Prog. Mater. Sci. 68 1Google Scholar
[4] Yang Q, Shi Z, Ma D, He Y, Wa ng 2018 J. Ceram. Int. 44 14850Google Scholar
[5] Qiao H M, He C, Wang Z J, Li X Z, Liu Y, Long X F 2018 J. Eur. Ceram. Soc. 38 3162Google Scholar
[6] Zhu L F, Zhang B P, Duan J Q, Xun B W, Wang N, Tang Y C, Zhao G L 2018 J. Eur. Ceram. Soc. 38 3463Google Scholar
[7] Luo B C, Wang X H, Tian E K, Qu H M, Zhao Q C, Cai Z M, Wang H X, Feng W, Li B W, Li L T 2018 J. Am. Ceram. Soc. 101 2976Google Scholar
[8] 曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军 2016 物理学报 65 137701Google Scholar
Gao W Q, Liu P Z, Chen Y, Pan R K, Qi Y J 2016 Acta Phys. Sin. 65 137701Google Scholar
[9] Shvartsman V V, Kleemann W 2008 Phys. Rev. B 77 054105Google Scholar
[10] Zhang J, Wang G S, Gao F, Mao C L, Dong X L 2013 Ceram. Int. 39 1971Google Scholar
[11] Ottini R, Tealdi C, Tomasi C, Tredici I G, Soffientini A, Anselmi-Tamburini U, Ghigna P, Spinolo G 2017 J. Appl. Phys. 121 085104Google Scholar
[12] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5Google Scholar
[13] Velayutham T, Salim N, Gan W 2016 J. Alloys Compd. 6 334
[14] Chen H, Guo S B, Yao C H, Dong X L, Mao C L, Wang G S 2017 Ceram. Int. 43 3610Google Scholar
[15] Zheng J, Chen G H, Yuan C L, Zhou C R, Chen X, Feng Q, Li M 2016 Ceram. Int. 42 1827Google Scholar
[16] Chen F, Liu Q X, Tang X G, Jiang Y P, Yue J L, Li J K 2016 J. Elec. Mat. 45 3174Google Scholar
[17] Fan H Q, Zhang L Y, Yao X 1998 J. Mater. Sci. 33 895Google Scholar
[18] Viehland D, Wu Z, Huang W H 1995 Philos. Mag. A 71 205Google Scholar
[19] Hennings D, Schnell A, Simon G 1982 J. Am. Ceram. Soc. 65 539Google Scholar
[20] Zhao Y Y, Wang J P, Zhang L X, Shi X J, Liu S J, Zhang D W 2016 Ceram. Int. 42 16697Google Scholar
[21] Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M 1994 Phys. Rev. B 49 7868Google Scholar
[22] Cao Z Z, Liu X T, He W Y, Ruan X Z, Gao Y F, Liu J R 2015 Physica B 477 8Google Scholar
[23] Wang X, Lu X, Zhang C, Wu X, Cai W, Peng S, Bo H F, Kan Y, Huang F Z, Zhu J S 2010 J. Appl. Phys. 107 114101Google Scholar
[24] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Chem. Soc. 98 551
[25] Fang T T, Chung H Y 2009 Appl. Phys. Lett. 94 092905Google Scholar
[26] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香 2012 物理学报 61 207702Google Scholar
Wu J B, Tang X G, Jia Z H, Chen D G, Jiang Y P, Liu Q X 2012 Acta Phys. Sin. 61 207702Google Scholar
[27] Wang M J, Zhang Y, Liu X L, Wang X R 2013 Ceram. Int. 39 2069Google Scholar
[28] Morii K, Kawano H, Fujii I, Matsui T, Nakayama Y 1995 J. Appl. Phys. 78 1914Google Scholar
[29] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302Google Scholar
[30] Singh G, Tiwari V S, Gupta P K 2010 J. Appl. Phys. 107 064103Google Scholar
[31] Jiang X P, Jiang Y L, Jiang X G, Chen C, Tu N, Chen Y J 2017 Chin. Phys. B 26 077701Google Scholar
-
图 2 在1 kHz频率下, 介电常数与温度的函数关系(黑色实线是居里-外斯定律拟合, 红色实线是改进的居里-外斯定律的拟合) (a) SBN40; (b) SBN50; (c) SBN60; (d)在1 kHz下三个样品的γ, Tm和T0的值
Figure 2. The inverse of dielectric permittivity as a function of temperature at 1 kHz (the black solid lines are used to fit the Curie-Weiss law, the red solid lines used to fit the modified Curie-Weiss law): (a) SBN40; (b) SBN50; (c) SBN60; (d) the value of γ, Tm and T0 for three samples at 1 kHz.
图 3 SBN陶瓷的Cole-Cole图(插图为阻抗虚部归一化 (Z''/Z''max)随频率的变化关系图) (a) SBN40; (b) SBN50; (c) SBN60; (d)在843 K下所有SBN陶瓷的Cole-Cole图
Figure 3. Cole-Cole plots for SBN ceramics (the insets show the normalized imaginary parts of impedance (Z''/Z''max) with frequency): (a) SBN40; (b) SBN50; (c) SBN60; (d) Cole-Cole plots for SBN ceramics at 843 K.
-
[1] Zhang Y, Xie M Y, Roscow J, Bao Y X, Zhou K C, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 6569Google Scholar
[2] Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar
[3] Zhang S J, Li F, Jiang X N, Kim J, Luo J, Geng X C 2015 Prog. Mater. Sci. 68 1Google Scholar
[4] Yang Q, Shi Z, Ma D, He Y, Wa ng 2018 J. Ceram. Int. 44 14850Google Scholar
[5] Qiao H M, He C, Wang Z J, Li X Z, Liu Y, Long X F 2018 J. Eur. Ceram. Soc. 38 3162Google Scholar
[6] Zhu L F, Zhang B P, Duan J Q, Xun B W, Wang N, Tang Y C, Zhao G L 2018 J. Eur. Ceram. Soc. 38 3463Google Scholar
[7] Luo B C, Wang X H, Tian E K, Qu H M, Zhao Q C, Cai Z M, Wang H X, Feng W, Li B W, Li L T 2018 J. Am. Ceram. Soc. 101 2976Google Scholar
[8] 曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军 2016 物理学报 65 137701Google Scholar
Gao W Q, Liu P Z, Chen Y, Pan R K, Qi Y J 2016 Acta Phys. Sin. 65 137701Google Scholar
[9] Shvartsman V V, Kleemann W 2008 Phys. Rev. B 77 054105Google Scholar
[10] Zhang J, Wang G S, Gao F, Mao C L, Dong X L 2013 Ceram. Int. 39 1971Google Scholar
[11] Ottini R, Tealdi C, Tomasi C, Tredici I G, Soffientini A, Anselmi-Tamburini U, Ghigna P, Spinolo G 2017 J. Appl. Phys. 121 085104Google Scholar
[12] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5Google Scholar
[13] Velayutham T, Salim N, Gan W 2016 J. Alloys Compd. 6 334
[14] Chen H, Guo S B, Yao C H, Dong X L, Mao C L, Wang G S 2017 Ceram. Int. 43 3610Google Scholar
[15] Zheng J, Chen G H, Yuan C L, Zhou C R, Chen X, Feng Q, Li M 2016 Ceram. Int. 42 1827Google Scholar
[16] Chen F, Liu Q X, Tang X G, Jiang Y P, Yue J L, Li J K 2016 J. Elec. Mat. 45 3174Google Scholar
[17] Fan H Q, Zhang L Y, Yao X 1998 J. Mater. Sci. 33 895Google Scholar
[18] Viehland D, Wu Z, Huang W H 1995 Philos. Mag. A 71 205Google Scholar
[19] Hennings D, Schnell A, Simon G 1982 J. Am. Ceram. Soc. 65 539Google Scholar
[20] Zhao Y Y, Wang J P, Zhang L X, Shi X J, Liu S J, Zhang D W 2016 Ceram. Int. 42 16697Google Scholar
[21] Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M 1994 Phys. Rev. B 49 7868Google Scholar
[22] Cao Z Z, Liu X T, He W Y, Ruan X Z, Gao Y F, Liu J R 2015 Physica B 477 8Google Scholar
[23] Wang X, Lu X, Zhang C, Wu X, Cai W, Peng S, Bo H F, Kan Y, Huang F Z, Zhu J S 2010 J. Appl. Phys. 107 114101Google Scholar
[24] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Chem. Soc. 98 551
[25] Fang T T, Chung H Y 2009 Appl. Phys. Lett. 94 092905Google Scholar
[26] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香 2012 物理学报 61 207702Google Scholar
Wu J B, Tang X G, Jia Z H, Chen D G, Jiang Y P, Liu Q X 2012 Acta Phys. Sin. 61 207702Google Scholar
[27] Wang M J, Zhang Y, Liu X L, Wang X R 2013 Ceram. Int. 39 2069Google Scholar
[28] Morii K, Kawano H, Fujii I, Matsui T, Nakayama Y 1995 J. Appl. Phys. 78 1914Google Scholar
[29] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302Google Scholar
[30] Singh G, Tiwari V S, Gupta P K 2010 J. Appl. Phys. 107 064103Google Scholar
[31] Jiang X P, Jiang Y L, Jiang X G, Chen C, Tu N, Chen Y J 2017 Chin. Phys. B 26 077701Google Scholar
Catalog
Metrics
- Abstract views: 10836
- PDF Downloads: 204
- Cited By: 0