-
An ultra-low frequency vibrational noise isolation apparatus from external vibration can be a critical factor in many fields such as precision measurement, high-technology manufacturing, scientific instruments, and gravitational wave detection. To increase the accuracies of these experiments, well performed vibration isolation technology is required. Until recently the cold atom gravimeter has played a crucial role in measuring the acceleration due to gravity and earth gravity gradient. The vibration isolation is one of the key techniques in the cold atom gravimeter. To reduce the vibrational noise caused by the reflecting mirror of Raman beams in the cold atom gravimeter, a compact active low-frequency vibration isolation system based on sliding-mode robust control is designed and demonstrated. The sliding-mode robust control active vibration isolation method is used to solve the vibration problem of Raman mirror in the cold atomic gravimeter. The purpose of vibration control is that the controller enables the system to be at zero state as the system states are away from the equilibrium due to vibration disturbance. In this system, the mechanical setup is based on a commercial passive isolation platform which only plays a role at higher frequency. A sliding-mode robust control subsystem is used to process and feed back the vibration measured by a seismometer which can measure the velocity of the ground vibration. A voice coil actuator is used to control and cancel the motion of a passive vibration isolation platform. The simulation and experiment results of vibration isolation platform show, on the one hand, that the vibration noise power spectral density decreases by up to 99.9%, and that the phase noise in cold atom interferometry produced by vibration decreases by up to nearly 85.3% compared with the results of the passive vibration isolation platform. On the other hand, compared with the lead-lag control method, the vibration noise power spectral density decreases by up to 83.3% and the phase noise in cold atom interferometry produced by vibration decreases by nearly 40.2%. Therefore, the sliding-mode robust control has the advantages of less tuning parameters, strong anti-interference ability, and more obvious vibration isolating effect.
-
Keywords:
- ultra-low frequency vibration /
- sliding-mode robust algorithm /
- active control /
- cold atom gravimeter
[1] Kasevich M, Chu S 1991 Phys. Rev. Lett. B 67 181
[2] Kasevich M, Chu S 1992 Appl. Phys. B 54 321
[3] Borde C J 1989 Phys. Lett. A 140 10
[4] Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E, Kasapi S 1991 Phys. Rev. Lett. 66 2693
[5] Clauser J F 1988 Physica B 151 262
[6] Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297
[7] Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689
[8] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 43610
[9] Hauth M, Freier C, Schkolnik M, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49
[10] Jacquey M, Miffre A, Buchner M, Trenec G, Vigue J 2006 Appl. Phys. B 84 617
[11] Zhou L, Xiong Z Y, Wang Y, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J 2011 Gen. Relat. Gravit 43 1931
[12] Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735
[13] Frier C 2010 Ph. D. Dissertation (Hamburg: Universitt Hamburg)
[14] Tang B, Zhou L, Wang Y H, Xiong Z Y, Xiong Z Y, Wang J, Zhan M S 2014 Rev. Sci. Instrum. 85 093109
[15] Zhou M K, Xiong X, Chen L L, Cui J F, Duan X C, Hu Z K 2015 Rev. Sci. Instrum. 86 046108
[16] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25
[17] Luan Q L, Chen Z W, Xu J R, He H N 2014 Journal of Vibration and Shock 33 54 (in Chinese)[栾强利, 陈章位, 徐尽荣, 贺惠农 2014 振动与冲击 33 54]
[18] Chen X, Wang H, Tao W, Yang C L 2017 Chinese Journal of Sensors and Actuators 30 777 (in Chinese)[陈希, 王海, 陶伟, 杨春来 2017 传感技术学报 30 777]
[19] Liu G D, Xu X K, Liu B G, Chen F D, Hu T, Lu C, Gan Y 2016 Acta Phys. Sin. 65 209501 (in Chinese)[刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨 2016 物理学报 65 209501]
[20] Lu M M, Zhou J K, Lin J Q, Li Y C, Zhou X Q 2016 Machine Tool Hydraulics 23 46 (in Chinese)[卢明明, 周家康, 林洁琼, 李迎春, 周晓勤 2016 机床与液压 23 46]
[21] Wei Y M, Liu X H, Fan Z C 2017 Aerospace Control and Application 43 1 (in Chinese)[魏延明, 刘旭辉, 樊子辰 2017 空间控制技术与应用 43 1]
[22] Sun Y F 2017 Measurement and Control Technology 34 80 (in Chinese)[孙亚飞 2017 测控技术 34 80]
[23] Hu J P, Zheng C, Li K J, Liu C P, Hu Q 2015 Noise and Vibration Control 35 193 (in Chinese)[胡均平, 郑聪, 李科军, 刘成沛, 胡骞 2015 噪声与振动控制 35 193]
[24] Dai X Z, Liu X Y, Chen L 2016 Acta Phys. Sin. 65 130701 (in Chinese)[代显智, 刘小亚, 陈蕾 2016 物理学报 65 130701]
[25] Li Z L 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[李子龙 2015 博士学位论文 (武汉:华中科技大学)]
[26] Boulandet R, Michau M, Herzog P, Micheau P, Berry A 2016 J. Sound. Vib. 378 14
[27] Liu L 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[刘磊 2011 博士学位论文 (哈尔滨:哈尔滨工业大学)]
[28] Xia Z W, Wang X T, Hou J J, Wei S B, Fang Y Y 2016 J. Low Freq. Noise. Vib. Act. Control 35 17
[29] Aloufi B, Behdinan K, Zu J 2016 Smart Mater. Struct. 25 125004
-
[1] Kasevich M, Chu S 1991 Phys. Rev. Lett. B 67 181
[2] Kasevich M, Chu S 1992 Appl. Phys. B 54 321
[3] Borde C J 1989 Phys. Lett. A 140 10
[4] Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E, Kasapi S 1991 Phys. Rev. Lett. 66 2693
[5] Clauser J F 1988 Physica B 151 262
[6] Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297
[7] Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689
[8] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 43610
[9] Hauth M, Freier C, Schkolnik M, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49
[10] Jacquey M, Miffre A, Buchner M, Trenec G, Vigue J 2006 Appl. Phys. B 84 617
[11] Zhou L, Xiong Z Y, Wang Y, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J 2011 Gen. Relat. Gravit 43 1931
[12] Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735
[13] Frier C 2010 Ph. D. Dissertation (Hamburg: Universitt Hamburg)
[14] Tang B, Zhou L, Wang Y H, Xiong Z Y, Xiong Z Y, Wang J, Zhan M S 2014 Rev. Sci. Instrum. 85 093109
[15] Zhou M K, Xiong X, Chen L L, Cui J F, Duan X C, Hu Z K 2015 Rev. Sci. Instrum. 86 046108
[16] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25
[17] Luan Q L, Chen Z W, Xu J R, He H N 2014 Journal of Vibration and Shock 33 54 (in Chinese)[栾强利, 陈章位, 徐尽荣, 贺惠农 2014 振动与冲击 33 54]
[18] Chen X, Wang H, Tao W, Yang C L 2017 Chinese Journal of Sensors and Actuators 30 777 (in Chinese)[陈希, 王海, 陶伟, 杨春来 2017 传感技术学报 30 777]
[19] Liu G D, Xu X K, Liu B G, Chen F D, Hu T, Lu C, Gan Y 2016 Acta Phys. Sin. 65 209501 (in Chinese)[刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨 2016 物理学报 65 209501]
[20] Lu M M, Zhou J K, Lin J Q, Li Y C, Zhou X Q 2016 Machine Tool Hydraulics 23 46 (in Chinese)[卢明明, 周家康, 林洁琼, 李迎春, 周晓勤 2016 机床与液压 23 46]
[21] Wei Y M, Liu X H, Fan Z C 2017 Aerospace Control and Application 43 1 (in Chinese)[魏延明, 刘旭辉, 樊子辰 2017 空间控制技术与应用 43 1]
[22] Sun Y F 2017 Measurement and Control Technology 34 80 (in Chinese)[孙亚飞 2017 测控技术 34 80]
[23] Hu J P, Zheng C, Li K J, Liu C P, Hu Q 2015 Noise and Vibration Control 35 193 (in Chinese)[胡均平, 郑聪, 李科军, 刘成沛, 胡骞 2015 噪声与振动控制 35 193]
[24] Dai X Z, Liu X Y, Chen L 2016 Acta Phys. Sin. 65 130701 (in Chinese)[代显智, 刘小亚, 陈蕾 2016 物理学报 65 130701]
[25] Li Z L 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[李子龙 2015 博士学位论文 (武汉:华中科技大学)]
[26] Boulandet R, Michau M, Herzog P, Micheau P, Berry A 2016 J. Sound. Vib. 378 14
[27] Liu L 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[刘磊 2011 博士学位论文 (哈尔滨:哈尔滨工业大学)]
[28] Xia Z W, Wang X T, Hou J J, Wei S B, Fang Y Y 2016 J. Low Freq. Noise. Vib. Act. Control 35 17
[29] Aloufi B, Behdinan K, Zu J 2016 Smart Mater. Struct. 25 125004
Catalog
Metrics
- Abstract views: 7402
- PDF Downloads: 269
- Cited By: 0