Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u

Zhou Xian-Ming Wei Jing Cheng Rui Mei Ce-Xiang Zeng Li-Xia Wang Xing Liang Chang-Hui Zhao Yong-Tao Zhang Xiao-An

Citation:

W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u

Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An
PDF
HTML
Get Citation
  • The L-shell X-ray emission of tungsten is investigated under the bombardment of C6+ ions in a high energy range of 154—424 MeV/u. Compared with the atomic data, the energy of the X-ray is enlarged, and the relative intensity ratio of Lι, Lβ1,3,4 and Lβ2,15 to Lα1,2 X-rays are enhanced. The L-subshell and the total X-ray production cross section are calculated from a well corrected thick target formula and compared with the theoretical estimation of binary encounter approximation (BEA), plane-wave Born approximation (PWBA) and ECPSSR (PWBA theory modified with Energy-loss, Coulomb-repulsion, Perturbed-Stationary-State and Relativistic corrections). On the whole, the experimental cross sections are all smaller than the prediction of PWBA and ECPSSR, but in rough agreement with that of BEA. It is indicated that the inner-shell ionization of W can be considered as a binary process between the high energy C6+ ions acting as a point charge and the independent target electrons. With the L-shell ionization, the outer-shells are multiply ionized. The multi-ionization degree is approximately regard as a constant in the present work. This leads the X-ray energy to be blueshifted and the relative intensity ratios of Lι and Lβ to Lα X-ray to be enhanced. Using the atomic parameters corrected by multi-ionization, the X-ray production cross section can be estimated by the BEA model.
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096), the Scientific Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2021JQ-812), the Scientific Research Program Foundation of the Education Department of Shaanxi Province, China (Grant No. 20JK0975), the Acadimic Leader of Xianyang Normal University, China (Grant No. XSYXSD202108), and the Key Cultivation Project of Xianyang Normal University, China (Grant No. XSYK21037).
    [1]

    Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801

    [2]

    Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130Google Scholar

    [3]

    Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710Google Scholar

    [4]

    Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469Google Scholar

    [5]

    Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214

    [6]

    Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473

    [7]

    周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002Google Scholar

    Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002Google Scholar

    [8]

    叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003Google Scholar

    Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003Google Scholar

    [9]

    赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004Google Scholar

    Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004Google Scholar

    [10]

    曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005Google Scholar

    Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005Google Scholar

    [11]

    赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006Google Scholar

    Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006Google Scholar

    [12]

    郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007Google Scholar

    Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007Google Scholar

    [13]

    马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008Google Scholar

    [14]

    马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009Google Scholar

    Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009Google Scholar

    [15]

    孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010Google Scholar

    Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010Google Scholar

    [16]

    程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar

    Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011Google Scholar

    [17]

    Kawata S 2021 Adv. Phys. X 6 1873860

    [18]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [19]

    Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37Google Scholar

    [20]

    Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317Google Scholar

    [21]

    Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [22]

    Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [23]

    Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767

    [24]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969

    [25]

    Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19Google Scholar

    [26]

    Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123Google Scholar

    [27]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [28]

    Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11Google Scholar

    [29]

    Gryzinski M 1965 Phys. Rev. A 138 A336

    [30]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1Google Scholar

    [31]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [32]

    Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8Google Scholar

    [33]

    Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232Google Scholar

    [34]

    Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85Google Scholar

    [35]

    Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703Google Scholar

    [36]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [37]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [38]

    张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 物理学报 62 173401Google Scholar

    Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401Google Scholar

    [39]

    Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49Google Scholar

    [40]

    Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952Google Scholar

    [41]

    Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006Google Scholar

    [42]

    Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708Google Scholar

    [43]

    Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235Google Scholar

    [44]

    Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165Google Scholar

    [45]

    Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153Google Scholar

    [46]

    Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129Google Scholar

    [47]

    Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257Google Scholar

    [48]

    Bearden J A 1967 Rev. Mod. Phys. 39 78Google Scholar

    [49]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book

    [50]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [51]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [52]

    Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255Google Scholar

    [53]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [54]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [55]

    Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675Google Scholar

    [56]

    Campbell J L 2003 At. Data Nucl. Data tables 85 291Google Scholar

    [57]

    Campbell J L 2009 At. Data Nucl. Data tables 95 115Google Scholar

    [58]

    Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141

    [59]

    Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165Google Scholar

    [60]

    Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140Google Scholar

    [61]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [62]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [63]

    Scofield J H 1974 At. Data Nucl. Data tables 14 121Google Scholar

    [64]

    Scofield J H 1974 Phys. Rev. A 10 1507

  • 图 1  Si漂移X射线探测器(SDD)的探测效率

    Figure 1.  Efficiency of the silicon drift detector.

    图 2  不同能量C6+离子激发W的L壳层特征X射线谱, 以及质子激发谱

    Figure 2.  W L-shell X-ray spectra induced by high energy C6+ ions with various incident energy, and compared with that induced by proton.

    图 3  不同能量C6+激发W的Lβ1, 3, 4与Lα1, 2 X射线相对强度比

    Figure 3.  Relative intensity ratios of W Lβ1, 3, 4 to Lα1, 2 X-ray induced by C6+ ions with various incident energy.

    图 5  不同能量C6+激发W的Lι与Lα1, 2 X射线相对强度比

    Figure 5.  Relative intensity ratios of W Lι and Lα1, 2 X-ray induced by C6+ ions with various incident energy.

    图 4  不同能量C6+激发W的Lβ2, 15与Lα1, 2 X射线相对强度比

    Figure 4.  Relative intensity ratios of W Lβ2, 15 and Lα1, 2 X-ray induced by C6+ ions with various incident energy.

    图 6  C6+离子产生W的L X射线发射截面实验值, 以及不同的理论计算值

    Figure 6.  L X-ray production cross section of W produced by high energy C6+ ions, and compared with various theoretical calculations.

    表 1  不同能量C6+离子轰击产生W的L壳层分支X射线能量, 以及300 keV质子激发数据和单电离的原子数据[48,49]

    Table 1.  W L-subshell X-ray energies induced by high energy C6+ ions and 300 keV H+, and the atomic data [48,49].

    Lι/eV1, 2/eV1, 3, 4/eV2, 15/eV1/eV2, 3/eV
    Atomic73878392967399551128511647
    Proton7383 ± 38390 ± 39677 ± 49959 ± 511289 ± 411649 ± 5
    154 MeV/u7508 ± 58472 ± 39750 ± 310041 ± 511363 ± 611794 ± 9
    205 MeV/u7497 ± 78438 ± 59711 ± 59999 ± 711349 ± 911743 ± 10
    293 MeV/u7495 ± 68446 ± 39718 ± 410017 ± 511343 ± 711767 ± 8
    343 MeV/u7493 ± 58432 ± 59708 ± 410005 ± 411336 ± 811746 ± 11
    424 MeV/u7503 ± 78440 ± 49712 ± 510007 ± 611346 ± 711749 ± 10
    DownLoad: CSV

    表 2  高能C6+离子激发W的L X射线发射截面

    Table 2.  Experimental results of W L-shell X-ray production cross section induced by high energy C6+ ions.

    E/(MeV·u–1)Lι/(102 b)Lα/(103 b)1, 3, 4/(103 b)2, 15/(102 b)Lβ/(103 b)Lγ/(102 b)Ltotal/(103 b)
    1542.29 ± 0.392.58 ± 0.441.55 ± 0.267.41 ± 1.252.29 ± 0.395.48 ± 0.935.64 ± 0.96
    2051.56 ± 0.262.18 ± 0.371.22 ± 0.215.25 ± 0.891.74 ± 0.303.89 ± 0.664.47 ± 0.76
    2931.28 ± 0.221.79 ± 0.301.06 ± 0.184.56 ± 0.771.51 ± 0.263.10 ± 0.533.74 ± 0.64
    3431.24 ± 0.211.71 ± 0.291.07 ± 0.184.56 ± 0.771.52 ± 0.262.96 ± 0.503.68 ± 0.62
    4241.13 ± 0.191.63 ± 0.280.92 ± 0.164.44 ± 0.751.36 ± 0.232.70 ± 0.463.40 ± 0.57
    DownLoad: CSV
  • [1]

    Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801

    [2]

    Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130Google Scholar

    [3]

    Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710Google Scholar

    [4]

    Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469Google Scholar

    [5]

    Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214

    [6]

    Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473

    [7]

    周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002Google Scholar

    Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002Google Scholar

    [8]

    叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003Google Scholar

    Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003Google Scholar

    [9]

    赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004Google Scholar

    Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004Google Scholar

    [10]

    曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005Google Scholar

    Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005Google Scholar

    [11]

    赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006Google Scholar

    Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006Google Scholar

    [12]

    郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007Google Scholar

    Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007Google Scholar

    [13]

    马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008Google Scholar

    [14]

    马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009Google Scholar

    Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009Google Scholar

    [15]

    孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010Google Scholar

    Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010Google Scholar

    [16]

    程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011Google Scholar

    Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011Google Scholar

    [17]

    Kawata S 2021 Adv. Phys. X 6 1873860

    [18]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [19]

    Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37Google Scholar

    [20]

    Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317Google Scholar

    [21]

    Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [22]

    Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [23]

    Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767

    [24]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969

    [25]

    Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19Google Scholar

    [26]

    Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123Google Scholar

    [27]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [28]

    Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11Google Scholar

    [29]

    Gryzinski M 1965 Phys. Rev. A 138 A336

    [30]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1Google Scholar

    [31]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [32]

    Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8Google Scholar

    [33]

    Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232Google Scholar

    [34]

    Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85Google Scholar

    [35]

    Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703Google Scholar

    [36]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [37]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [38]

    张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 物理学报 62 173401Google Scholar

    Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401Google Scholar

    [39]

    Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49Google Scholar

    [40]

    Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952Google Scholar

    [41]

    Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006Google Scholar

    [42]

    Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708Google Scholar

    [43]

    Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235Google Scholar

    [44]

    Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165Google Scholar

    [45]

    Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153Google Scholar

    [46]

    Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129Google Scholar

    [47]

    Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257Google Scholar

    [48]

    Bearden J A 1967 Rev. Mod. Phys. 39 78Google Scholar

    [49]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book

    [50]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [51]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [52]

    Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255Google Scholar

    [53]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [54]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [55]

    Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675Google Scholar

    [56]

    Campbell J L 2003 At. Data Nucl. Data tables 85 291Google Scholar

    [57]

    Campbell J L 2009 At. Data Nucl. Data tables 95 115Google Scholar

    [58]

    Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141

    [59]

    Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165Google Scholar

    [60]

    Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140Google Scholar

    [61]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [62]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [63]

    Scofield J H 1974 At. Data Nucl. Data tables 14 121Google Scholar

    [64]

    Scofield J H 1974 Phys. Rev. A 10 1507

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] Zhou Xian-Ming,  Wei Jing,  Cheng Rui,  Mei Ce-Xiang,  Zeng Li-Xia,  Wang Xing,  Liang Chang-Hui,  Zhao Yong-Tao,  Zhang Xiao-An. W L-shell X-ray emission induced by C6+ions in the energy range of several hundred MeV/u. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [4] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [5] Zhou Xian-Ming, Wei Jing, Cheng Rui, Zhao Yong-Tao, Zeng Li-Xia, Mei Ce-Xiang, Liang Chang-Hui, Li Yao-Zong, Zhang Xiao-An, Xiao Guo-Qing. I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets. Acta Physica Sinica, 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Liang Chang-Hui,  Zhang Xiao-An,  Li Yao-Zong,  Zhao Yong-Tao,  Zhou Xian-Ming,  Wang Xing,  Mei Ce-Xiang,  Xiao Guo-Qing. Multiple ionization effect of Au induced by different ions. Acta Physica Sinica, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [8] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Ren Jie-Ru, Wang Xing, Lei Yu, Sun Yuan-Bo, Cheng Rei, Xu Ge, Zeng Li-Xia. K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target. Acta Physica Sinica, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [9] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [10] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Wang Xing, Lei Yu, Sun Yuan-Bo, Wang Yu-Yu, Xu Ge, Ren Jie-Ru, Zhang Xiao-An, Liang Chang-Hui, Li Yao-Zong, Mei Ce-Xiang, Xiao Guo-Qing. Study of Si K-shell X-ray emission induced by H+ and Ar11+ ions. Acta Physica Sinica, 2013, 62(8): 083201. doi: 10.7498/aps.62.083201
    [11] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [12] Zou Xian-Rong, Shao Jian-Xiong, Chen Xi-Meng, Cui Ying. Kβ/Kα ratios and energies of the K-shell X-ray of Ar17+ ion in the interaction with metals. Acta Physica Sinica, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [13] Lü Ying, Chen Xi-Meng, Cao Zhu-Rong, Wu Wei-Dong. Cross section invertion between double electron capture and transfer ionisation in low energy collision of highly charged ion(4≤q≤7) with He. Acta Physica Sinica, 2010, 59(6): 3892-3896. doi: 10.7498/aps.59.3892
    [14] Zhang Bo-Li, Yang Zhi-Hu, Du Shu-Bin, Chang Hong-Wei, Xue Ying-Li, Song Zhang-Yong, Zhu Ke-Xin, Tian Ye. Study of the L-subshell X-ray production cross sections of Au by 20—50 MeV O5+ bombardments. Acta Physica Sinica, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [15] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [16] Yang Zhi-Hu, Song Zhang-Yong, Cui Ying, Zhang Hong-Qiang, Ruan Fang-Fang, Shao Jian-Xiong, Du Juan, Liu Yu-Wen, Zhu Ke-Xin, Zhang Xiao-An, Shao Cao-Jie, Lu Rong-Chun, Yu De-Yang, Chen Xi-Meng, Cai Xiao-Hong. X-ray spectra produced by interaction of Ar16+ and Ar17+ with Zr. Acta Physica Sinica, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] Lu Yan-Xia, Chen Xi-Meng, Ding Bao-Wei, Fu Hong-Bin, Cui Ying, Shao Jian-Xiong, Zhang Hong-Qiang, Gao Zhi-Min. Investigation of pure ionization cross-sections of neon induced by C3+ collision. Acta Physica Sinica, 2007, 56(8): 4461-4466. doi: 10.7498/aps.56.4461
    [18] Gao Zhi-Min, Chen Xi-Meng, Liu Zhao-Yuan, Ding Bao-Wei, Lu Yan-Xia, Fu Hong-Bin, Liu Yu-Wen, Du Juan, Cui Ying, Shao Jian-Xiong, Zhang Hong-Qiang, Sun Guang-Zhi. Investigation of the processes in the collisions of partially stripped carbon ions with helium atom at low to intermediate energies. Acta Physica Sinica, 2007, 56(4): 2079-2084. doi: 10.7498/aps.56.2079
    [19] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  4412
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  16 December 2021
  • Accepted Date:  13 February 2022
  • Available Online:  27 May 2022
  • Published Online:  05 June 2022

/

返回文章
返回