Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission efficiency and beam reception of the SESRI 300 MeV synchrotron injection line

Zhao Liang-Chao

Citation:

Transmission efficiency and beam reception of the SESRI 300 MeV synchrotron injection line

Zhao Liang-Chao
PDF
HTML
Get Citation
  • SESRI 300 MeV synchrotron in Harbin Institute of Technology is now under construction and the whole equipment has been installed and tested. Before commissioning beam, the beam transport through the injection line is simulated by using a full-scall model through the Tracewin code. The field distribution of RFQ cavity is calculated with CST, and the results are substituted into the Tracewin code to generate the accurate results. The envelop mode and multi-particles mode are used in the beam simulation with two typical beams (H${}_2^+ $ and 209Bi32+, the lightest beam and the heaviest beam). Both beams are accelerated from 4 keV/u to 2 MeV/u by an RFQ cavity and two IH-DTL cavities. Then the H${}_2^+ $ beam is stripped into a proton beam by a carbon foil and accelerated to 5.6 MeV with the third IH-DTL cavity. Simulation results show that the strength of the magnetic field and the acceleration field are proportional to the mass charge ratio. The beam transmission efficiency and the injection line reception are inversely proportional to the beam transverse emittance. The 209Bi32+ beam transmission efficiency and beam reception (momentum spread less than ±0.2%) are 72.16% and 46.72% with transverse emittance ε = 0.12π mm·mrad (ECR source output) and ε = 0.4π mm·mrad (RFQ output). H${}_2^+ $ beam transmission ratio and beam reception are 24.19% and 17.89% with ε = 0.2π mm·mrad (ECR source output) and ε = 0.5π mm·mrad (RFQ output). In order to obtain high transmission efficiency and beam reception, the transverse emittance should be limited to 0.1π mm·mrad after the RFQ. With this limitation, the 209Bi32+ beam transmission efficiency and the reception are increased to 96.68% and 92.63%, respectively, and the H${}_2^+ $ beam transmission efficiency and the rception rise to 74.40% and 68.18%, respectively. If two additional quadrupole magnets are added, the H${}_2^+ $ beam transmission efficiency and beam reception can be increased to 90.73% and 83.61%, respectively, which will fulfill the requirement for long-time operation. The phase space change process shows that loss of 209Bi32+ beam is caused mainly by longitudinal defocusing (energy spread and phase width spread), the loss of proton beam is caused both by the longitudinal defocusing and by the transverse defocusing (beam envelop spreading), that is why two additional focusing magnets should be added in proton beam acceleration. Results also show that by using field distribution calculation in the simulation process the greater influence of the cavity design details can be confirmed such as beam off-axis caused by dipole field in the IH-DTL cavity and beam loss caused by unperfect field in the RFQ. Tracking with field distribution is shown to be a useful method to link the cavity design process, beam line design process, and beam commission process.
      Corresponding author: Zhao Liang-Chao, zhaoliangchao@hit.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. FRFCU5710053321) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12005208)
    [1]

    Qian C, Sun L T, Jia Z H 2020 Rev. Sci. Instrum 91 023313Google Scholar

    [2]

    刘明 2017 硕士学位论文 (兰州: 近代物理研究所)

    Liu M 2017 M. S. Dissertation (Lanzhou: Institute of Modern Physics) (in Chinese)

    [3]

    喻九维, 杨雅清, 吕明邦, 陈文军, 郑亚军, 许小伟, 陆海娇, 潘永祥 2021 强激光与粒子束 33 054001

    Yu J W, Yang Y Q, Lü M B, Cheng W J, Zheng Y J, Xu X W, Lu H J, Pan Y X 2021 High Power Laser and Particle Beams 33 054001

    [4]

    李钟汕 2017 博士学位论文 (兰州: 近代物理研究所)

    Li Z S 2017 Ph. D. Dissertation (Lanzhou: Institute of Modern Physics) (in Chinese)

    [5]

    Ren H T, Pozdeyev E, Lund M S 2016 Rev. Sci. Instrum. 87 02B919Google Scholar

    [6]

    Akagi T, Bellan L 2020 Rev. Sci. Instrum. 91 023321Google Scholar

    [7]

    Clemente G, Ratzinger U, Podlech H, Groening L, Brodhage R, Barth W 2011 Phys. Rev. Spec. Top. Ac. 14 110101

    [8]

    Yang Y, Dou W P, Sun L T 2016 Rev. Sci. Instrum. 87 02B910Google Scholar

    [9]

    Thuillier T, Angot J, Barue C 2016 Rev. Sci. Instrum. 87 02A733Google Scholar

    [10]

    Benedetti S, Bellodi G, Kuchler D 2018 Rev. Sci. Instrum. 89 123301Google Scholar

    [11]

    Ullmann C, Berezov R, Fils J 2014 Rev. Sci. Instrum. 85 02A952Google Scholar

    [12]

    颜学庆, 陆元荣, 吴瑜, 张宏林, 高淑丽, 方家训 2002 北京大学学报 (自然科学版) 38 1

    Yan X Q, Lu Y R, Wu Y, Zhang H L, Gao S L, Fang J X 2002 Universitatis Pekinensis 38 1

    [13]

    吴瑜 1999 北京大学学报 (自然科学版) 35 3

    Wu Y 1999 Universitatis Pekinensis 35 3

    [14]

    王科栋 2019 博士学位论文 (兰州: 近代物理研究所)

    Wang K D 2017 Ph. D. Dissertation (Lanzhou: Institute of Modern Physics) (in Chinese)

    [15]

    Winklehner D, Hammond R, Alons J 2016 Rev. Sci. Instrum. 87 02B929Google Scholar

    [16]

    Otani M, Mibe T, Yoshida M 2016 Phys. Rev. Accel. Beams 19 040101Google Scholar

    [17]

    He T, Lu L, He Y, Hang Y L, Ma W, Tan T, Zhang Z L, Yang L, Xing C C, Li C X, Sun L P 2021 Nuclear Inst. Meth. Phys. Research A 1010 165466Google Scholar

    [18]

    Wang K D, Yuan Y J, Yin X J, Yang J C, Li Z S, Du H, Li X N, Kong Q Y, Wang K, Dong Z Q, Liu J, Xia J W 2019 Nuclear Inst. Meth. Phys. Research A 927 375Google Scholar

    [19]

    Uriot D 2003 Proceedings of the 2003 Particle Accelerator Conference, Portland, USA, May 12–16, 2003 p3491

    [20]

    吕建钦 2003 带电粒子束光学 (北京: 高等教育出版社) 第267页

    Lv J Q 2003 The Optics of Charged Particle Beams (Beijing: Higher Education Press) p267 (in Chinese)

    [21]

    陈佳洱 2019 加速器物理基础 (北京: 北京大学出版社) 第353页

    Chen J Er 2019 Foundment Physics of Accelerator (Beijing: Peking University Press) p353 (in Chinese)

  • 图 1  SESRI 300 MeV同步加速器注入线布局

    Figure 1.  Injection line layout of SESRI 300 MeV synchrotron.

    图 2  RFQ结构及H${}_2^+ $束流加速

    Figure 2.  RFQ structure and H${}_2^+ $ beam acceleration.

    图 3  IH-DTL加速腔结构及束流加速 (a) IH-DTL1加速H${}_2^+ $束; (b) IH-DTL2加速H${}_2^+ $束; (c) IH-DTL3加速质子束

    Figure 3.  IH-DTL structure and beams acceleration: (a) H${}_2^+ $ beam acceleration in IH-DTL1; (b) H${}_2^+ $ beam acceleration in IH-DTL2; (c) proton beam acceleration in IH-DTL3.

    图 4  注入线第一段加速结构束流传输包络 (a) H$ {}_2^+ $束; (b) 209Bi32+

    Figure 4.  Beam envelop in the first section of the injection line: (a) H$ {}_2^+ $ beam; (b) 209Bi32+ beam.

    图 5  注入线第一段RFQ出口处束流的六维相空间的分布 (a) H$ {}_2^+ $ 束; (b)209Bi32+

    Figure 5.  Phase space distribution of the beam output by RFQ: (a) H$ {}_2^+ $ beam; (b) 209Bi32+ beam.

    图 6  注入线第二段加速结构束流传输包络 (a) H${}_2^+ $(剥离为质子)束; (b) 209Bi32+

    Figure 6.  Beam envelop in the second section: (a) H${}_2^+ $(proton)beam; (b) 209Bi32+ beam.

    图 7  注入线出口处的束流相空间分布 (a) 质子束; (b) 209Bi32+

    Figure 7.  Phase space distribution of the beam in front of septum: (a) Proton beam; (b) 209Bi32+ beam.

    图 8  209Bi32+在IH-DTL2出口处的纵向分布(灰色粒子为注入线最终接受的粒子) (a) ε = 0.1π mm·mrad; (b) ε = 0.4π mm·mrad

    Figure 8.  Longitudinal distribution of 209Bi32+ beam output by IH-DTL2 (Gray particles are finally accepted by the injection line): (a) ε = 0.1π mm·mrad; (b) ε = 0.4π mm·mrad.

    图 9  增加四极磁铁前后质子束的包络(0.1π mm·mrad) (a)增加前; (b)增加后

    Figure 9.  Proton beam envelop with and without additional quadrupoles (0.1π mm·mrad): (a) With additional quadrupoles; (b) without additional quadrupoles.

    图 10  增加四极磁铁前后质子束的β函数(0.1π mm·mrad) (a)增加前; (b)增加后

    Figure 10.  β function of proton beam envelop with and without additional quadrupoles (0.1π mm·mrad): (a) Without additional quadrupoles; (b) with additional quadrupoles.

    表 1  注入线粒子束的指标

    Table 1.  Beam parameters of the injection line.

     指标要求
     粒子种类A/Q < 6.53的任意粒子
     能量重离子束2 MeV/u; 质子束5.6 MeV
     流强重离子束50e μA; 质子束250 μA
     90%自然发射度 < 15π mm·mrad
     Δp/p < ± 0.2%
    DownLoad: CSV

    表 2  RFQ输出束团横向发射度对注入线传输效率和接受效率的影响

    Table 2.  Transmission ratio and beam acceptance of the injection line with different transverse emittance output by RFQ.

    横向发射度
    /(mm·mrad)
    质子束209Bi32+
    传输
    效率/%
    接受
    效率/%
    传输
    效率/%
    接受
    效率/%
    0.5π24.1917.8457.4835.29
    0.4π31.2624.3772.1646.72
    0.3π42.2532.3185.9856.94
    0.2π56.8047.5695.8674.00
    0.1π74.4068.1896.6892.63
    DownLoad: CSV

    表 3  注入线束流发射度、环的接受度及twiss参数对比

    Table 3.  List of the injection beam emittance, ring acceptance and twiss parameters.

    注入束流参数环的接受参数
     εx/(mm·mrad)13.1π200π
     εy/ (mm·mrad)9.7π30π
     βx/m1.634.963
     βy/m1.692.105
     αx0.61431.0263
     αy–0.6558–1.1720
     Δp/p/% ± 0.2 ± 0.3
     D0.151.6582
     D'–0.200.9391
    DownLoad: CSV
  • [1]

    Qian C, Sun L T, Jia Z H 2020 Rev. Sci. Instrum 91 023313Google Scholar

    [2]

    刘明 2017 硕士学位论文 (兰州: 近代物理研究所)

    Liu M 2017 M. S. Dissertation (Lanzhou: Institute of Modern Physics) (in Chinese)

    [3]

    喻九维, 杨雅清, 吕明邦, 陈文军, 郑亚军, 许小伟, 陆海娇, 潘永祥 2021 强激光与粒子束 33 054001

    Yu J W, Yang Y Q, Lü M B, Cheng W J, Zheng Y J, Xu X W, Lu H J, Pan Y X 2021 High Power Laser and Particle Beams 33 054001

    [4]

    李钟汕 2017 博士学位论文 (兰州: 近代物理研究所)

    Li Z S 2017 Ph. D. Dissertation (Lanzhou: Institute of Modern Physics) (in Chinese)

    [5]

    Ren H T, Pozdeyev E, Lund M S 2016 Rev. Sci. Instrum. 87 02B919Google Scholar

    [6]

    Akagi T, Bellan L 2020 Rev. Sci. Instrum. 91 023321Google Scholar

    [7]

    Clemente G, Ratzinger U, Podlech H, Groening L, Brodhage R, Barth W 2011 Phys. Rev. Spec. Top. Ac. 14 110101

    [8]

    Yang Y, Dou W P, Sun L T 2016 Rev. Sci. Instrum. 87 02B910Google Scholar

    [9]

    Thuillier T, Angot J, Barue C 2016 Rev. Sci. Instrum. 87 02A733Google Scholar

    [10]

    Benedetti S, Bellodi G, Kuchler D 2018 Rev. Sci. Instrum. 89 123301Google Scholar

    [11]

    Ullmann C, Berezov R, Fils J 2014 Rev. Sci. Instrum. 85 02A952Google Scholar

    [12]

    颜学庆, 陆元荣, 吴瑜, 张宏林, 高淑丽, 方家训 2002 北京大学学报 (自然科学版) 38 1

    Yan X Q, Lu Y R, Wu Y, Zhang H L, Gao S L, Fang J X 2002 Universitatis Pekinensis 38 1

    [13]

    吴瑜 1999 北京大学学报 (自然科学版) 35 3

    Wu Y 1999 Universitatis Pekinensis 35 3

    [14]

    王科栋 2019 博士学位论文 (兰州: 近代物理研究所)

    Wang K D 2017 Ph. D. Dissertation (Lanzhou: Institute of Modern Physics) (in Chinese)

    [15]

    Winklehner D, Hammond R, Alons J 2016 Rev. Sci. Instrum. 87 02B929Google Scholar

    [16]

    Otani M, Mibe T, Yoshida M 2016 Phys. Rev. Accel. Beams 19 040101Google Scholar

    [17]

    He T, Lu L, He Y, Hang Y L, Ma W, Tan T, Zhang Z L, Yang L, Xing C C, Li C X, Sun L P 2021 Nuclear Inst. Meth. Phys. Research A 1010 165466Google Scholar

    [18]

    Wang K D, Yuan Y J, Yin X J, Yang J C, Li Z S, Du H, Li X N, Kong Q Y, Wang K, Dong Z Q, Liu J, Xia J W 2019 Nuclear Inst. Meth. Phys. Research A 927 375Google Scholar

    [19]

    Uriot D 2003 Proceedings of the 2003 Particle Accelerator Conference, Portland, USA, May 12–16, 2003 p3491

    [20]

    吕建钦 2003 带电粒子束光学 (北京: 高等教育出版社) 第267页

    Lv J Q 2003 The Optics of Charged Particle Beams (Beijing: Higher Education Press) p267 (in Chinese)

    [21]

    陈佳洱 2019 加速器物理基础 (北京: 北京大学出版社) 第353页

    Chen J Er 2019 Foundment Physics of Accelerator (Beijing: Peking University Press) p353 (in Chinese)

  • [1] Zhou Xian-Tao, Jiang Ying-Hua. Quantum secure direct communication scheme with identity authentication. Acta Physica Sinica, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] Zhou Xian-Tao, Jiang Ying-Hua, Guo Xiao-Jun, Peng Zhan. Quantum secure direct communication scheme based on the mixture of single photon and Bell state with two way authentication. Acta Physica Sinica, 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [3] Tang Chuan-Xiang, Deng Xiu-Jie. Steady-state micro-bunching accelerator light source. Acta Physica Sinica, 2022, 71(15): 152901. doi: 10.7498/aps.71.20220486
    [4] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [5] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [6] Sun Ya-Xiu, Zhuo Qing-Kun, Jiang Qing-Hui, Li Qian. New differential-mode-source cable bundle crosstalk model based on multiconductor transmission lines theory. Acta Physica Sinica, 2015, 64(4): 044102. doi: 10.7498/aps.64.044102
    [7] Yuan Ying. Study of nuclear stopping in Au+Au collisions at alternating gradient synchrotron energies by the ultra-relativistic quantum molecular dynamic model. Acta Physica Sinica, 2013, 62(22): 222402. doi: 10.7498/aps.62.222402
    [8] Chen Dai-Bing, Wang Dong, Qin Fen, Wen Jie, Jin Xiao, An Hai-Shi, Zhang Xin-Kai. Relation analysis between starting voltage and input voltage for a magneticaly insulated linear oscillator. Acta Physica Sinica, 2012, 61(1): 012901. doi: 10.7498/aps.61.012901
    [9] Geng Shao-Fei, Tang De-Li, Qiu Xiao-Ming, Nie Jun-Wei, Yu Yi-Jun. The influence of Hall drift to the ionization efficiency of anode layer Hall plasma accelerator. Acta Physica Sinica, 2012, 61(7): 075210. doi: 10.7498/aps.61.075210
    [10] Chen Zi-Lun, Zhou Pu, Xu Xiao-Jun, Hou Jing, Jiang Zong-Fu. The influence of spectral lines and coupling coefficient on mutual injection locking of fiber lasers. Acta Physica Sinica, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [11] Yang Hai-Liang, Qiu Ai-Ci, Li Jing-Ya, Sun Jian-Feng, He Xiao-Ping, Tang Jun-Ping, Wang Hai-Yang, Huang Jian-Jun, Ren Shu-Qing, Zou Li-Li, Yang Li. Energy spectra of high-power ion beams measured with a pile of thin films on FLASH Ⅱ. Acta Physica Sinica, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [12] Wu Peng-Ju, Li Yu-De, Lin Xiao-Yan, Liu An-Dong, Sun Tian-Xi. Simulation of x-ray transmission through a capillary. Acta Physica Sinica, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [13] Zhu Lun-Wu, Weng Jia-Qiang, Gao Yuan, Fang Jin-Qing. . Acta Physica Sinica, 2002, 51(7): 1483-1488. doi: 10.7498/aps.51.1483
    [14] GAO YUAN, WENG JIA-QIANG, FANG JIN-QING, LUO XIAO-SHU. A METHOD OF MULTI PERIODICAL INTERVAL CONTROL BEAM HALO-CHAOS BY WAVELET FEEDBACK CONTROL FUNCTION. Acta Physica Sinica, 2001, 50(8): 1440-1446. doi: 10.7498/aps.50.1440
    [15] KUANG JING-YU, DENG KUN, HUANG RONG-HAI. AN ENCRYPTION APPROACH TO DIGITAL COMMUNICATION BY USING SPATIOTEMPORAL CHAOS SYNCHRONIZATION. Acta Physica Sinica, 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
    [16] WU ZHENG-YUN, HUANG QI-SHENG. THE METHOD OF FOCUSED Ga+ ION BEAM IMPLANTATION TO FABRICATE SEMICONDUCTOR QUANTUM WELL WIRE. Acta Physica Sinica, 1996, 45(3): 486-490. doi: 10.7498/aps.45.486
    [17] иCCлEдOBAHиE лPOЦECCA лPOXOЖдEHиЯ ЧACTиЦ ЧEP3 HEлиHEйHYЮ PE3OHAHCHYЮ лиHЮ лиHиЮ (Qρ=6/5) B ЦиКлOTPOHE C лPOCTPAHCTBEHHOй BAPиAЦиEй. Acta Physica Sinica, 1964, 20(7): 636-642. doi: 10.7498/aps.20.636
    [18] АНАЛИЗ РАДИАЛЬНОГО БЕТАТРОННОГО КОЛЕБАНИЯ ЧАСТИЦ БЕЗ УЧЁТА УСКОРЕНИЯ В ЦИКЛОТРОНЕ С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ. Acta Physica Sinica, 1964, 20(4): 305-310. doi: 10.7498/aps.20.305
    [19] YEH MING-HAN, SUN LIANG-FANG, SHYU CHIEN-MING, CHIN CHIEN-CHUNG, YEH LONG-FEI, CHEN JYH-CHEN, CHEN CHIEN-POU, SHAH GUANG-CHANG, YU CHUEH-HSIEN, LI ZHENG-WU, CHAO CHUNG-YAO. A PROTON ELECTROSTATIC ACCELERATOR. Acta Physica Sinica, 1963, 19(1): 60-69. doi: 10.7498/aps.19.60
    [20] SEN QING-HE, JIANG SONG-SHENG, GU YI-PAN. PULSED MODULATION OF CYCLOTRON ION BEAM. Acta Physica Sinica, 1960, 16(2): 94-97. doi: 10.7498/aps.16.94
Metrics
  • Abstract views:  4268
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2021
  • Accepted Date:  05 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回