-
For an inertial-confinement-fusion cryogenic target, the fusion ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than 1 μm (root mean square) to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is generated in the presence of volumetric heat and affected by the thermal environment around the capsule. For the D2 fuel targets, the uniformity of the fusion ice layer inside the capsule is consistent with the uniformity of the surface temperature around the capsule, and the latter can be controlled by directional infrared illumination. A major challenge of directional infrared illumination is the precision of directional infrared spatial distribution. In this paper, a numerical model coupling the directional infrared tracking and temperature field calculation is proposed and validated by experimental results. A three-dimensional physical model of the cryogenic target is used to study the influences of different forms of directional infrared spatial distribution errors on the temperature uniformity of the capsule. The results show that the eccentricity of IR band axis has the worst effect on the temperature uniformity of the capsule, followed by the distance between both IR bands, and the width of the IR band has the least effect on the temperature uniformity of the capsule. Therefore, the eccentricity of IR band axis should be avoided in experiment to ensure the uniformity of the temperature of the capsule, further ensuring the uniformity of the fuel ice layer inside the capsule.
-
Keywords:
- inertial confinement fusion /
- directional infrared illumination /
- spatial distribution error /
- numerical simulation.
[1] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 物理学报 61 147303Google Scholar
Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar
[2] 杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar
Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar
[3] Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar
[4] Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar
[5] 程云鹤, 董洪光, 耿纪超, 何继善 2021 中国工程科学 23 11Google Scholar
Cheng Y H, Dong H G, Geng J C, He J S 2021 Strategic Study of CAE 23 11Google Scholar
[6] Fang S D, Zhao C H, Ding Z H, Zhang S X, Liao R J 2021 Proc Chin Soc Elect Eng DOI:10.13334/j.0258-8013.pcsee.212121
[7] 张占文, 漆小波, 李波 2012 物理学报 61 145204Google Scholar
Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar
[8] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 物理学报 64 215201Google Scholar
Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar
[9] Nuckolls J, Wood L, Thiessen A 1972 Nature 239 139Google Scholar
[10] Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar
[11] Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar
[12] Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[13] Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar
[14] 王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar
Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar
[15] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar
[16] Moll G, Baclet P, Martin M 2006 Fusion Sci. Technal. 49 574Google Scholar
[17] Moll G, Baclet P, Martin M 2007 Fusion Sci. Technal. 51 737Google Scholar
[18] Betti R, Hurricane O A 2016 Nature Physics 12 435Google Scholar
[19] Bittner D N, Collins G W, Sater J D 2003 Fusion Sci Technol 44 749Google Scholar
[20] Moody J D, Kozioziemski B J, Mapoles E R 2008 J. Phys. :Conf. Ser. 112 032064Google Scholar
[21] Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technal. 45 262Google Scholar
[22] London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technal. 45 245Google Scholar
[23] Cook R C, Anthamatten M, Letts S A 2004 Fusion Science and Technology 45 148Google Scholar
[24] 郭富城, 李翠, 厉彦忠 2021 物理学报 70 160703Google Scholar
Guo F C, Li C, Li Y Z 2021 Acta Phys. Sin. 70 160703Google Scholar
[25] Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar
[26] 林博颖, 苏新明, 简亚彬 2018 航天器环境工程 35 5Google Scholar
Lin B Y, Su X M, Jian Y B 2018 Spacecraft Environment Engineering 35 5Google Scholar
[27] Li C, Chen P W, Zhao J 2018 Fusion Engineering & Design 127 23Google Scholar
-
图 17 不同南北两侧光轴同向偏移量下靶丸表面温度云图 (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm 靶丸表面温度云图和柱腔赤道区域定向红外辐照热流云图
Figure 17. The temperature contours of the capsule under different δ: (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, adding the radiation heat flux contour in the equatorial region of the hohlraum
图 19 不同南北两侧光轴对向偏移量下靶丸表面温度云图 (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, 靶丸表面温度云图和柱腔赤道区域定向红外辐照热流云图
Figure 19. The temperature contours of the capsule under different δ: (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, adding the radiation heat flux contour in the equatorial region of the hohlraum.
表 1 不同材料在18 K环境下的物性参数
Table 1. Physical properties of different materials at 18 K.
材料 铝 金 靶壳 He@1 kPa 气态D2 固态D2 密度 ρ/(kg·m–3) 2710 19320 1100 0.3 0.025 260 热容 cp/(J·kg–1·K–1) 8.37 14.66 57.49 5292.6 5193.7 5000 导热系数 λ/(W·m–1·K–1) 27 1173.44 0.057 0.021 0.024 0.29 动力黏度 μ/(10–6 kg·m–1·s–1) — — — 1.31 3.42 — 注: 本文不考虑气体对定向红外的影响, 因此氦气和氘气的吸收系数和散射系数均为0. -
[1] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 物理学报 61 147303Google Scholar
Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar
[2] 杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar
Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar
[3] Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar
[4] Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar
[5] 程云鹤, 董洪光, 耿纪超, 何继善 2021 中国工程科学 23 11Google Scholar
Cheng Y H, Dong H G, Geng J C, He J S 2021 Strategic Study of CAE 23 11Google Scholar
[6] Fang S D, Zhao C H, Ding Z H, Zhang S X, Liao R J 2021 Proc Chin Soc Elect Eng DOI:10.13334/j.0258-8013.pcsee.212121
[7] 张占文, 漆小波, 李波 2012 物理学报 61 145204Google Scholar
Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar
[8] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 物理学报 64 215201Google Scholar
Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar
[9] Nuckolls J, Wood L, Thiessen A 1972 Nature 239 139Google Scholar
[10] Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar
[11] Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar
[12] Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[13] Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar
[14] 王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar
Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar
[15] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar
[16] Moll G, Baclet P, Martin M 2006 Fusion Sci. Technal. 49 574Google Scholar
[17] Moll G, Baclet P, Martin M 2007 Fusion Sci. Technal. 51 737Google Scholar
[18] Betti R, Hurricane O A 2016 Nature Physics 12 435Google Scholar
[19] Bittner D N, Collins G W, Sater J D 2003 Fusion Sci Technol 44 749Google Scholar
[20] Moody J D, Kozioziemski B J, Mapoles E R 2008 J. Phys. :Conf. Ser. 112 032064Google Scholar
[21] Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technal. 45 262Google Scholar
[22] London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technal. 45 245Google Scholar
[23] Cook R C, Anthamatten M, Letts S A 2004 Fusion Science and Technology 45 148Google Scholar
[24] 郭富城, 李翠, 厉彦忠 2021 物理学报 70 160703Google Scholar
Guo F C, Li C, Li Y Z 2021 Acta Phys. Sin. 70 160703Google Scholar
[25] Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar
[26] 林博颖, 苏新明, 简亚彬 2018 航天器环境工程 35 5Google Scholar
Lin B Y, Su X M, Jian Y B 2018 Spacecraft Environment Engineering 35 5Google Scholar
[27] Li C, Chen P W, Zhao J 2018 Fusion Engineering & Design 127 23Google Scholar
Catalog
Metrics
- Abstract views: 3580
- PDF Downloads: 34
- Cited By: 0