Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum secure direct communication scheme based on the mixture of single photon and Bell state with two way authentication

Zhou Xian-Tao Jiang Ying-Hua Guo Xiao-Jun Peng Zhan

Citation:

Quantum secure direct communication scheme based on the mixture of single photon and Bell state with two way authentication

Zhou Xian-Tao, Jiang Ying-Hua, Guo Xiao-Jun, Peng Zhan
PDF
HTML
Get Citation
  • In response to the demand for identity authentication in quantum secure direct communication, this paper proposes a quantum secure direct communication scheme based on a mixture of single photon and Bell state, by combining the bidirectional identity authentication. Before communication begins, both parties share a series of secret information to prepare a series of single photon and Bell state particles. Encoding four single photons and four Bell states yields eight types of encoded information, followed by identity authentication. The first step in identity authentication is to use a single photon to verify the legitimacy of the receiver. If the error exceeds the given threshold, it indicates the presence of eavesdropping. Otherwise, the channel is safe. Then, Bell state particles are used to verify the legitimacy of the sender, and the threshold is also used to determine whether there is eavesdropping. The present method is the same as previous one. If the error rate is higher than the given threshold, it indicates the existence of third-party eavesdropping. Otherwise, it indicates that the channel is secure. As for the specific verification method, it will be explained in detail in the article. Afterwards, Bell state particles are mixed with a single photon as a transmission carrier, and eavesdropping detection particles are added whenever the quantum state is sent. However, once the eavesdropper intercepts the transmitted particles, owing to incomplete information obtained, the eavesdropper is unable to recover the original information, and the eavesdropping behavior will be immediately detected, thus terminating communication. In this scheme, single photon and Bell states are fully utilized, and hybrid communication can effectively improve transmission efficiency, encoding capability, and quantum bit utilization. Security analysis shows that this scheme can resist common external and internal attacks such as interception/measurement replay attacks, auxiliary particle attacks, and identity impersonation attacks. The analysis of efficiency and encoding capacity shows that the transmission efficiency of this scheme is 1, the encoding capacity is 3 bits per state, and the quantum bit utilization rate is 1. Compared with other schemes, this scheme has significant advantages because it uses different particles for bidirectional authentication, making it more difficult for attackers to crack, and thus it has higher security than traditional schemes.
      Corresponding author: Jiang Ying-Hua, 250364629@qq.com
    • Funds: Project supported by the Department of Education Research Special Scientific Research Plan of Shaanxi Province, China (Grant No. 19JK0889) and the Natural Science Foundation of Tibet Autonomous Region, China (Grant Nos. XZ2019ZRG-36(Z), XZ202101ZR0089G).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE Press) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B, Liu A Q 2021 AAPPS Bull. 31 15Google Scholar

    [4]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundament. Res. 1 96Google Scholar

    [5]

    Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 349Google Scholar

    [6]

    Beige A, Englert B G, Kurtsiefer C 2002 J. Phys. A Math. Gen. 35 L407Google Scholar

    [7]

    Quan D X, Zhu C H, Liu S Q, Pei C X 2015 Chin. Phys. B 24 256Google Scholar

    [8]

    Li Y B, Song T T, Huang W 2015 Internat. J. Theoretical Phys. 54 589Google Scholar

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [12]

    Wang C, Deng F G, Li Y S 2005 Phys. Rev. A 71 044305Google Scholar

    [13]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 358 256Google Scholar

    [14]

    Man Z X, Xia Y J 2007 Chin. Phys. Lett. 24 15Google Scholar

    [15]

    Lan M, Shao T N, Xie J L, Yang X F, Sun K, Cai T T, Wang J Z 2011 Sci. China Phys. Mech. Astron. 54 942Google Scholar

    [16]

    李凯, 黄晓英, 滕吉红, 李振华 2012 电子与信息学报 34 1917Google Scholar

    Li K, Huang X Y, Teng J H, Li Z H 2012 J. Electron. Inf. Tech. 34 1917Google Scholar

    [17]

    安辉耀, 刘敦伟, 耿瑞华, 曾和平, 赵林欣 2016 系统工程与电子技术 38 1917

    An H Y, Liu D W, Geng R H, Zeng H P, Zhao L X 2016 Syst. Eng. Electron. Tech. 38 1917

    [18]

    龙桂鲁 2015 十一届全国光学前沿研讨会 长沙 2015-10-09 p21

    Long G L 2015 The 11 th National Symposium on Optical Frontiers Changsha, China, October 9, 2015 p21 (in Chinese)

    [19]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [20]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [21]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [22]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [23]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [24]

    赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 8 30Google Scholar

    Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technology 8 30Google Scholar

    [25]

    周贤韬, 江英华, 郭晨飞, 赵宁, 刘彪 2021 量子电子学报 39 768Google Scholar

    Zhou X T, Jiang Y H, Guo C F, Zhao N, Liu B 2021 Chin. J. Quantum Electron. 39 768Google Scholar

    [26]

    周贤韬, 江英华 2022 激光技术 46 79Google Scholar

    Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar

    [27]

    赵宁, 江英华, 周贤韬 2022 物理学报 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [28]

    龚黎华, 陈振泳, 徐良超, 周南润 2022 物理学报 71 130304Google Scholar

    Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar

    [29]

    Qi R Y, Sun Z, Lin Z S, Niu P H, Hao W T, Song L Y, Huang Q, Gao J C, Yin L G, Long G L 2019 Light Sci. Appl. 8 22Google Scholar

    [30]

    Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83Google Scholar

    [31]

    Wang C 2021 Fundament. Res. 1 91Google Scholar

  • 图 1  方案流程图

    Figure 1.  Scheme flow chart.

    表 1  编码规则

    Table 1.  Coding rules.

    单光子表示的经典信息Bell态表示的经典信息
    $ | 0 \rangle $000$ | {{\psi ^ + }} \rangle $010
    $| 1 \rangle $111$ | {{\psi ^ - }} \rangle $101
    $ | + \rangle $001$| {{\varphi ^ + }} \rangle $011
    $ | - \rangle $110$| {{\varphi ^ - }} \rangle $100
    DownLoad: CSV

    表 2  基于单光子身份认证过程

    Table 2.  Single photon based identity authentication process.

    1234
    秘钥K1001
    序列$ {S_n} $量子态$ | + \rangle $$ | 0 \rangle $$ | 0 \rangle $$ | + \rangle $
    合法Alice根据K
    选测量基
    XZZX
    合法Alice测量结果$ | + \rangle $$ | 0 \rangle $$ | 0 \rangle $$ | + \rangle $
    冒充Alice测量结果
    (随机选择测量基)
    50%$ | + \rangle $
    25%$ | 0 \rangle $
    25%$ | 1 \rangle $
    50%$ | 0 \rangle $
    25%$ | + \rangle $
    25%$ | - \rangle $
    50%$ | 0 \rangle $
    25%$ | + \rangle $
    25%$ | - \rangle $
    50%$ | + \rangle $
    25%$ | 0 \rangle $
    25%$ | 1 \rangle $
    DownLoad: CSV

    表 3  基于Bell态身份认证过程

    Table 3.  Identity authentication process based on Bell state.

    ${\varphi }^{+}或{\varphi }^{-}$在$ {S}_{1} $中位置14591112151718$ \cdots $
    量子态$ |0 \rangle $$ | + \rangle $$ |0 \rangle $$ | + \rangle $$ |- \rangle $$ |1 \rangle $$ |0 \rangle $$ |- \rangle $$ | + \rangle $$ \cdots $
    共享秘钥K1001
    Alice公布位置L451518
    根据K选择测量基XZZX
    合法Bob测量结果$ | + \rangle $$ |0 \rangle $$ |0 \rangle $$ | + \rangle $
    冒充Bob 测量结果$50{\text{%}} | + \rangle $

    $25{\text{%}} |0 \rangle $

    $25{\text{%}} |1 \rangle $
    $ 50{\text{%}}|0 \rangle $

    $25{\text{%}} | + \rangle $

    $25{\text{%}} |- \rangle $
    $ 50{\text{%}}|0 \rangle $

    $ 25{\text{%}} | + \rangle $

    $25{\text{%}} |- \rangle $
    $50{\text{%}} | + \rangle $

    $25{\text{%}} |0 \rangle $

    $25{\text{%}} |1 \rangle $
    DownLoad: CSV

    表 4  信息传输过程

    Table 4.  Information transmission process.

    12345678
    秘密信息M010111011110011110000100
    混合态序列${S}_{1-S}$量子态$ \left| {{\psi ^ + }} \right\rangle $$ \left| 1 \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$ \left| 0 \right\rangle $$\left| {{\varphi ^ - }} \right\rangle $
    Alice公布的测量基Bell基ZBell基XBell基XZBell基
    Bob测量结果$ \left| {{\psi ^ + }} \right\rangle $$ \left| 1 \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$ \left| 0 \right\rangle $$\left| {{\varphi ^ - }} \right\rangle $
    解码得信息M010111011110011110000100
    DownLoad: CSV

    表 5  各方案参数对比

    Table 5.  Comparison of parameters of various schemes.

    协议传输
    效率 ξ
    量子比特
    利用率 η
    编码容量
    QSDC协议[10]11一个态: 1.0 bit
    One-Pad-Time-QSDC
    协议[11]
    11一个态: 1.0 bit
    基于纠缠交换的
    QSDC协议[12]
    11一个态: 1.0 bit
    Bell态和单光子
    混合QSDC协议[22]
    11一个态: 1.5 bits
    本协议11一个态: 3.0 bits
    DownLoad: CSV
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE Press) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B, Liu A Q 2021 AAPPS Bull. 31 15Google Scholar

    [4]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundament. Res. 1 96Google Scholar

    [5]

    Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 349Google Scholar

    [6]

    Beige A, Englert B G, Kurtsiefer C 2002 J. Phys. A Math. Gen. 35 L407Google Scholar

    [7]

    Quan D X, Zhu C H, Liu S Q, Pei C X 2015 Chin. Phys. B 24 256Google Scholar

    [8]

    Li Y B, Song T T, Huang W 2015 Internat. J. Theoretical Phys. 54 589Google Scholar

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [12]

    Wang C, Deng F G, Li Y S 2005 Phys. Rev. A 71 044305Google Scholar

    [13]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 358 256Google Scholar

    [14]

    Man Z X, Xia Y J 2007 Chin. Phys. Lett. 24 15Google Scholar

    [15]

    Lan M, Shao T N, Xie J L, Yang X F, Sun K, Cai T T, Wang J Z 2011 Sci. China Phys. Mech. Astron. 54 942Google Scholar

    [16]

    李凯, 黄晓英, 滕吉红, 李振华 2012 电子与信息学报 34 1917Google Scholar

    Li K, Huang X Y, Teng J H, Li Z H 2012 J. Electron. Inf. Tech. 34 1917Google Scholar

    [17]

    安辉耀, 刘敦伟, 耿瑞华, 曾和平, 赵林欣 2016 系统工程与电子技术 38 1917

    An H Y, Liu D W, Geng R H, Zeng H P, Zhao L X 2016 Syst. Eng. Electron. Tech. 38 1917

    [18]

    龙桂鲁 2015 十一届全国光学前沿研讨会 长沙 2015-10-09 p21

    Long G L 2015 The 11 th National Symposium on Optical Frontiers Changsha, China, October 9, 2015 p21 (in Chinese)

    [19]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [20]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [21]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [22]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [23]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [24]

    赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 8 30Google Scholar

    Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technology 8 30Google Scholar

    [25]

    周贤韬, 江英华, 郭晨飞, 赵宁, 刘彪 2021 量子电子学报 39 768Google Scholar

    Zhou X T, Jiang Y H, Guo C F, Zhao N, Liu B 2021 Chin. J. Quantum Electron. 39 768Google Scholar

    [26]

    周贤韬, 江英华 2022 激光技术 46 79Google Scholar

    Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar

    [27]

    赵宁, 江英华, 周贤韬 2022 物理学报 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [28]

    龚黎华, 陈振泳, 徐良超, 周南润 2022 物理学报 71 130304Google Scholar

    Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar

    [29]

    Qi R Y, Sun Z, Lin Z S, Niu P H, Hao W T, Song L Y, Huang Q, Gao J C, Yin L G, Long G L 2019 Light Sci. Appl. 8 22Google Scholar

    [30]

    Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83Google Scholar

    [31]

    Wang C 2021 Fundament. Res. 1 91Google Scholar

  • [1] Zhou Xian-Tao, Jiang Ying-Hua. Quantum secure direct communication scheme with identity authentication. Acta Physica Sinica, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] Zhao Liang-Chao. Transmission efficiency and beam reception of the SESRI 300 MeV synchrotron injection line. Acta Physica Sinica, 2022, 71(11): 112901. doi: 10.7498/aps.71.20212112
    [3] Wang Ming-Yu, Wang Xin-De, Ruan Dong, Long Gui-Lu. Quantum direct portation. Acta Physica Sinica, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [4] He Jiang-Tao, He Wen-Qi, Liao Mei-Hua, Lu Da-Jiang, Peng Xiang. Identity authentication based on two-beam interference and nonlinear correlation. Acta Physica Sinica, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [5] Yang Lu, Ma Hong-Yang, Zheng Chao, Ding Xiao-Lan, Gao Jian-Cun, Long Gui-Lu. Quantum communication scheme based on quantum teleportation. Acta Physica Sinica, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [6] Liu Zhi-Hao, Chen Han-Wu. Information leakage problem in quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [7] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [8] Ma Hong-Yang, Qin Guo-Qing, Fan Xing-Kui, Chu Peng-Cheng. Quantum network direct communication protocol over noisy channel. Acta Physica Sinica, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [9] Wu Gui-Tong, Zhou Nan-Run, Gong Li-Hua, Liu San-Qiu. Quantum dialogue protocols with identification over collection noisy channel without information leakage. Acta Physica Sinica, 2014, 63(6): 060302. doi: 10.7498/aps.63.060302
    [10] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] He Wen-Qi, Peng Xiang, Meng Xiang-Feng, Liu Xiao-Li. Multi-level authentication based on two-beam interference. Acta Physica Sinica, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [12] Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng. Geometric quantum phase for three-level mixed state. Acta Physica Sinica, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [13] Wang Tian-Yin, Qin Su-Juan, Wen Qiao-Yan, Zhun Fu-Chen. Analysis and improvement of multiparty controlled quantum secure direct communication protocol. Acta Physica Sinica, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [14] Wang Jian, Chen Huang-Qing, Zhang Quan, Tang Chao-Jing. Multiparty controlled quantum secure direct communication protocol. Acta Physica Sinica, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [15] Di Yao-Min, Hu Bao-Lin, Liu Dong-Dong, Yan Shi-Ming. Concurrence of the mixed state of two non-orthogonal pure states. Acta Physica Sinica, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [16] Li Zhao-Xin, Zou Jian, Cai Jin-Fang, Shao Bin. Entanglement between charge qubit and quantized field. Acta Physica Sinica, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] Wu Peng-Ju, Li Yu-De, Lin Xiao-Yan, Liu An-Dong, Sun Tian-Xi. Simulation of x-ray transmission through a capillary. Acta Physica Sinica, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [18] Deng Wen-Ji, Liu Ping, Xu Xiao. The uncertainty relations and squeezing effects for mixed states*. Acta Physica Sinica, 2004, 53(11): 3668-3672. doi: 10.7498/aps.53.3668
    [19] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Chen Xian-Hui, Cao Lie-Zhao. Anomalous thermal conductivity enhancement in the mixed state of MgB2. Acta Physica Sinica, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [20] KUANG JING-YU, DENG KUN, HUANG RONG-HAI. AN ENCRYPTION APPROACH TO DIGITAL COMMUNICATION BY USING SPATIOTEMPORAL CHAOS SYNCHRONIZATION. Acta Physica Sinica, 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
Metrics
  • Abstract views:  2890
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2022
  • Accepted Date:  10 April 2023
  • Available Online:  08 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回