Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

New differential-mode-source cable bundle crosstalk model based on multiconductor transmission lines theory

Sun Ya-Xiu Zhuo Qing-Kun Jiang Qing-Hui Li Qian

Citation:

New differential-mode-source cable bundle crosstalk model based on multiconductor transmission lines theory

Sun Ya-Xiu, Zhuo Qing-Kun, Jiang Qing-Hui, Li Qian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The traditional cable bundle crosstalk model is established based on an intra-system common mode source, without considering the crosstalk of cable bundles stimulated by a differential-mode source between different systems. To solve the physical problem of crosstalk between independent circuit cable bundles which is stimulated by a differential-mode source, in this article we propose a new differential-mode source cable bundle crosstalk calculation method based on the multiconductor transmission line theory. According to the mechanism of the differential-mode-stimulated transmission line coupling, using this method we obtain a new three-conductor transmission line parasitic parameter circuit model and mathematic matrix model through using the transmission line propagating transverse electro magnetic mode. We deduce the parasitic parameter calculation formula by an image method and Neumann formula, and then obtain the new cable bundle crosstalk chain parameter array equations in frequency domain. By using the top and end boundary conditions of the new differential-mode cable bundle crosstalk model, we finally work out the crosstalk voltage in frequency domain. In this article, we take the crosstalk between differential-mode parallel double culprit cables and the victim cable from other independent circuit for example. By simulating the crosstalk voltage of victim cable in different position arrangements, we obtain the crosstalk physical law between cable bundles under the differential-mode source condition, that is, the crosstalk of the victim cable located between differential-mode circuits is much larger than that situated outside the differential-mode circuit. We can also verify that this model can be used to calculate the crosstalk caused by differential-mode source at different frequencies. In this article, we analytically calculate the crosstalk problems caused by differential-mode source cable bundles for the first time, which provides theoretical basis for solving some practical electromagnetic compatibility problems such as the bundling of a large quantity of wires and the predicting of cable bundle crosstalk. Therefore it perfects the application of multiconductor transmission line model to cable bundle crosstalk problem, and has strong guiding significance.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51209055), the Aeronautic Science Foundation, China (the Science and Technology on Aircraft Control Laboratory) (Grant No. 201207P6001), the China Postdoctoral Science Foundation (Grant No. 3236310246), and the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCF140810).
    [1]

    Lu T B, Cui X 2000 Chin. J. Radio 15 269 (in Chinese) [卢铁兵,崔翔 2000 电波科学学报 15 269]

    [2]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [3]

    Rudolph S M, Grbic A 2010 IEEE Trans. Antennas Propag. 58 1144

    [4]

    Elfadel I M, Deutsch A, Smith H H, Rubin R J, Kopcsay G V 2004 IEEE Trans. Adv. Packag. 27 71

    [5]

    Zhang H, Siebert K, Frei S, Wenzel T, Mickisch W 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, USA, August 18-22, 2008 p1

    [6]

    Sarto M S, Tamburrano A 2006 IEEE International Symposium on Electromagnetic Compatibility Portland, USA, August 14-18, 2006 p466

    [7]

    Agrawal A K, Price H J 1980 IEEE Trans. Electromagn. Compat. 22 119

    [8]

    Wan J R, Liu Y P, Zhou H L 2010 Acta Phys. Sin. 59 2948 (in Chinese) [万健如, 刘英培, 周海亮 2010 物理学报 59 2948]

    [9]

    Li Y Q, Fu Y Q, Zhang H, Yuan N C 2009 Acta Phys. Sin. 58 3949 (in Chinese) [李有权, 付云起, 张辉, 袁乃昌 2009 物理学报 58 3949]

    [10]

    Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理学报 59 8566]

    [11]

    Orlandi A, Paul C R 2000 IEEE Trans. Micro. Theory Tech. 48 466

    [12]

    Antonini G, Orlandi A, Pignari S A 2013 IEEE Trans. Electromagn. Compat. 55 639

    [13]

    Paul C R 1992 IEEE Trans. Electromagn. Compat. 34 433

    [14]

    Andrieu G, Koné L, Bocquet F, Démoulin B, Parmantier J P 2008 IEEE Trans. Electromagn. Compat. 50 175

    [15]

    Andrieu G, Reineix A, Bunlon X, Parmantier J P, Koné L, Démoulin B 2009 IEEE Trans. Electromagn. Compat. 51 108

    [16]

    Rumold J, Ter Haseborg J L 2000 IEEE International Symposium on Electromagnetic Compatibility Wsahington, USA, August 21-25, 2000 p185

    [17]

    Chen J J, Lei Z Y, Wu S X, Li P J 2012 J. Microwaves S3 17 (in Chinese) [陈晋吉, 雷振亚, 吴仕喜, 李鹏杰 2012 微波学报 S3 17]

    [18]

    Mejdoub Y, Rouijaa H, Ghammaz A 2009 IEEE International Conference on Microelectronics Marrakech, The Kingdom of Morocco, December 19-22, 2009 p320

    [19]

    Nobakht R A, Ardalan S H, Shuey K 1989 IEEE International Conference on Communication Boston, USA, June 11-14, 1989 p1462

    [20]

    Xie Y Z, Wang Z J, Wang Q S, Zhou H 2006 J. Tsinghua Univ. 46 499 (in Chinese) [谢彦召, 王赞基, 王群书, 周辉 2006 清华大学学报46 499]

    [21]

    Lian Y X, Li H Y, Wu J Q, Yang S Y 2010 Trans. China Electrotech. Soc. 25 1 (in Chinese) [廉玉欣, 李浩昱, 吴建强, 杨世彦 2010 电工技术学报 25 1]

    [22]

    Zhu D Y, Shi C S 2001 China Nationwide Conference on Electromagnetic Compatibility Guangzhou, China, November 1, 1989 p38

    [23]

    Toki H, Sato K 2009 J. Phys. Soc. Jpn. 78 4201

  • [1]

    Lu T B, Cui X 2000 Chin. J. Radio 15 269 (in Chinese) [卢铁兵,崔翔 2000 电波科学学报 15 269]

    [2]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [3]

    Rudolph S M, Grbic A 2010 IEEE Trans. Antennas Propag. 58 1144

    [4]

    Elfadel I M, Deutsch A, Smith H H, Rubin R J, Kopcsay G V 2004 IEEE Trans. Adv. Packag. 27 71

    [5]

    Zhang H, Siebert K, Frei S, Wenzel T, Mickisch W 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, USA, August 18-22, 2008 p1

    [6]

    Sarto M S, Tamburrano A 2006 IEEE International Symposium on Electromagnetic Compatibility Portland, USA, August 14-18, 2006 p466

    [7]

    Agrawal A K, Price H J 1980 IEEE Trans. Electromagn. Compat. 22 119

    [8]

    Wan J R, Liu Y P, Zhou H L 2010 Acta Phys. Sin. 59 2948 (in Chinese) [万健如, 刘英培, 周海亮 2010 物理学报 59 2948]

    [9]

    Li Y Q, Fu Y Q, Zhang H, Yuan N C 2009 Acta Phys. Sin. 58 3949 (in Chinese) [李有权, 付云起, 张辉, 袁乃昌 2009 物理学报 58 3949]

    [10]

    Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理学报 59 8566]

    [11]

    Orlandi A, Paul C R 2000 IEEE Trans. Micro. Theory Tech. 48 466

    [12]

    Antonini G, Orlandi A, Pignari S A 2013 IEEE Trans. Electromagn. Compat. 55 639

    [13]

    Paul C R 1992 IEEE Trans. Electromagn. Compat. 34 433

    [14]

    Andrieu G, Koné L, Bocquet F, Démoulin B, Parmantier J P 2008 IEEE Trans. Electromagn. Compat. 50 175

    [15]

    Andrieu G, Reineix A, Bunlon X, Parmantier J P, Koné L, Démoulin B 2009 IEEE Trans. Electromagn. Compat. 51 108

    [16]

    Rumold J, Ter Haseborg J L 2000 IEEE International Symposium on Electromagnetic Compatibility Wsahington, USA, August 21-25, 2000 p185

    [17]

    Chen J J, Lei Z Y, Wu S X, Li P J 2012 J. Microwaves S3 17 (in Chinese) [陈晋吉, 雷振亚, 吴仕喜, 李鹏杰 2012 微波学报 S3 17]

    [18]

    Mejdoub Y, Rouijaa H, Ghammaz A 2009 IEEE International Conference on Microelectronics Marrakech, The Kingdom of Morocco, December 19-22, 2009 p320

    [19]

    Nobakht R A, Ardalan S H, Shuey K 1989 IEEE International Conference on Communication Boston, USA, June 11-14, 1989 p1462

    [20]

    Xie Y Z, Wang Z J, Wang Q S, Zhou H 2006 J. Tsinghua Univ. 46 499 (in Chinese) [谢彦召, 王赞基, 王群书, 周辉 2006 清华大学学报46 499]

    [21]

    Lian Y X, Li H Y, Wu J Q, Yang S Y 2010 Trans. China Electrotech. Soc. 25 1 (in Chinese) [廉玉欣, 李浩昱, 吴建强, 杨世彦 2010 电工技术学报 25 1]

    [22]

    Zhu D Y, Shi C S 2001 China Nationwide Conference on Electromagnetic Compatibility Guangzhou, China, November 1, 1989 p38

    [23]

    Toki H, Sato K 2009 J. Phys. Soc. Jpn. 78 4201

  • [1] Yuan Peng-Ju, Yang Yun-Zhe, Dong Shi-Jie, Tang Miao-Miao. Propagation properties of specular and antispecular twisted Gaussian Schell-model beams. Acta Physica Sinica, 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [2] Zhuang Ying-Hao, Fu Yun, Cai Wei, Zhang Qing-Song, Wu Zhen, Guo Lin-Hui, Zhong Zhe-Qiang, Zhang Bin. Analysis of physical mechanism of beam crosstalk in semiconductor laser array spectral-beam-combined system. Acta Physica Sinica, 2023, 72(2): 024206. doi: 10.7498/aps.72.20221783
    [3] Wang Yan, Han Ying, Li Zeng-Hui, Gong Lin, Wang Lu-Yao, Li Shu-Guang. A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation. Acta Physica Sinica, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [4] Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang. Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss. Acta Physica Sinica, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [5] A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210974
    [6] Ye Zhi-Hong, Zhang Jie, Zhou Jian-Jian, Gou Dan. Time domain hybrid method for coupling analysis of multi-conductor transmission lines on the lossy dielectric layer excited by ambient wave. Acta Physica Sinica, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [7] Lin Shu, Xia Ning, Wang Hong-Guang, Li Yong-Dong, Liu Chun-Liang. Multipactor susceptibility chart of coaxial transmission lines with stationary statistical modeling. Acta Physica Sinica, 2018, 67(22): 227901. doi: 10.7498/aps.67.20181341
    [8] Jiang Yong-Hong, Sun Wei-Guo, Zhang Yi, Fu Jia, Fan Qun-Chao. R-branch and Q-branch high rotational spectral lines of diatomic molecules using improved difference converging method. Acta Physica Sinica, 2016, 65(7): 070202. doi: 10.7498/aps.65.070202
    [9] Chen Qiang, Wang De-Hua. Study on the photodetachment of H- ion near a dielectric sphere. Acta Physica Sinica, 2014, 63(23): 233201. doi: 10.7498/aps.63.233201
    [10] Chen Cong, Li Ding-Guo, Jiang Zhi-Guo, Liu Hua-Bo. Electric field of a static electric dipole in three-layer medium model using secondary equivalent method. Acta Physica Sinica, 2012, 61(24): 244101. doi: 10.7498/aps.61.244101
    [11] Shou Qian, Jiang Qun, Liang Yan-Bin, Hu Wei. Strongly nonlocal spatial soliton propagation in lead glass. Acta Physica Sinica, 2011, 60(9): 094218. doi: 10.7498/aps.60.094218
    [12] Shi Peng-Fei, Tang Zhen-An, Liu Shu-Tian, Gao Ren-Jing, Duan Yu-Ping. Transmission line analogy model of left-handed metamaterials microstructure configuration. Acta Physica Sinica, 2010, 59(12): 8566-8573. doi: 10.7498/aps.59.8566
    [13] Wan Jian-Ru, Liu Ying-Pei, Zhou Hai-Liang. Transmission and reflection of high-frequency power pulse in cable based on transmission theory. Acta Physica Sinica, 2010, 59(5): 2948-2951. doi: 10.7498/aps.59.2948
    [14] Li You-Quan, Fu Yun-Qi, Zhang Hui, Yuan Nai-Chang. Analysis of reflection phase for high impedance surface based on a transmission line model. Acta Physica Sinica, 2009, 58(6): 3949-3954. doi: 10.7498/aps.58.3949
    [15] Wu Zhen-Jun, Wang Li-Fang, Liao Cheng-Lin. A novel FDTD method for multi-conductor transmission lines terminating in frequency-dependent loads. Acta Physica Sinica, 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [16] Wang Jin-Dong, Wu Zu-Heng, Zhang Bing, Wei Zheng-Jun, Liao Chang-Jun, Liu Song-Hao. A new circuit model for avalanche photodiodes to detect infrared single photon by transient process of transmission lines. Acta Physica Sinica, 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [17] Li Hai-Yang, Zhang Ye-Wen, Wang Peng-Chun, Li Gui-Quan. The transmission properties of resonant structure of one-dimension metamaterials. Acta Physica Sinica, 2007, 56(11): 6480-6485. doi: 10.7498/aps.56.6480
    [18] Li Ze-Hong, Li Zhao-Ji, Zhang Bo, Fan Jian. Mobility model of nonuniform channel MOS by radiation induced positive spatial charge. Acta Physica Sinica, 2004, 53(2): 561-565. doi: 10.7498/aps.53.561
    [19] Wang Zhong-Chun. The quantization of a mesoscopic dissipation transmission line. Acta Physica Sinica, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
    [20] WANG YIN-YUE, ZHEN CONG-MIAN, GONG HENG-XIANG, YAN ZHI-JUN, WANG YA-FAN, LIU XUE-QIN, YANG YING-HU, HE SHAN-HU. MEASUREMENT OF THE SPECIFIC CONTACT RESISTANCE OF Au/Ti/p-DIAMOND USING TRANSMIS SION LINE MODEL. Acta Physica Sinica, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
Metrics
  • Abstract views:  6471
  • PDF Downloads:  366
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2014
  • Accepted Date:  19 September 2014
  • Published Online:  05 February 2015

/

返回文章
返回