-
The traditional cable bundle crosstalk model is established based on an intra-system common mode source, without considering the crosstalk of cable bundles stimulated by a differential-mode source between different systems. To solve the physical problem of crosstalk between independent circuit cable bundles which is stimulated by a differential-mode source, in this article we propose a new differential-mode source cable bundle crosstalk calculation method based on the multiconductor transmission line theory. According to the mechanism of the differential-mode-stimulated transmission line coupling, using this method we obtain a new three-conductor transmission line parasitic parameter circuit model and mathematic matrix model through using the transmission line propagating transverse electro magnetic mode. We deduce the parasitic parameter calculation formula by an image method and Neumann formula, and then obtain the new cable bundle crosstalk chain parameter array equations in frequency domain. By using the top and end boundary conditions of the new differential-mode cable bundle crosstalk model, we finally work out the crosstalk voltage in frequency domain. In this article, we take the crosstalk between differential-mode parallel double culprit cables and the victim cable from other independent circuit for example. By simulating the crosstalk voltage of victim cable in different position arrangements, we obtain the crosstalk physical law between cable bundles under the differential-mode source condition, that is, the crosstalk of the victim cable located between differential-mode circuits is much larger than that situated outside the differential-mode circuit. We can also verify that this model can be used to calculate the crosstalk caused by differential-mode source at different frequencies. In this article, we analytically calculate the crosstalk problems caused by differential-mode source cable bundles for the first time, which provides theoretical basis for solving some practical electromagnetic compatibility problems such as the bundling of a large quantity of wires and the predicting of cable bundle crosstalk. Therefore it perfects the application of multiconductor transmission line model to cable bundle crosstalk problem, and has strong guiding significance.
-
Keywords:
- multiconductor transmission line theory /
- cable bundle crosstalk model /
- differential-mode source /
- image method
[1] Lu T B, Cui X 2000 Chin. J. Radio 15 269 (in Chinese) [卢铁兵,崔翔 2000 电波科学学报 15 269]
[2] Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629
[3] Rudolph S M, Grbic A 2010 IEEE Trans. Antennas Propag. 58 1144
[4] Elfadel I M, Deutsch A, Smith H H, Rubin R J, Kopcsay G V 2004 IEEE Trans. Adv. Packag. 27 71
[5] Zhang H, Siebert K, Frei S, Wenzel T, Mickisch W 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, USA, August 18-22, 2008 p1
[6] Sarto M S, Tamburrano A 2006 IEEE International Symposium on Electromagnetic Compatibility Portland, USA, August 14-18, 2006 p466
[7] Agrawal A K, Price H J 1980 IEEE Trans. Electromagn. Compat. 22 119
[8] Wan J R, Liu Y P, Zhou H L 2010 Acta Phys. Sin. 59 2948 (in Chinese) [万健如, 刘英培, 周海亮 2010 物理学报 59 2948]
[9] Li Y Q, Fu Y Q, Zhang H, Yuan N C 2009 Acta Phys. Sin. 58 3949 (in Chinese) [李有权, 付云起, 张辉, 袁乃昌 2009 物理学报 58 3949]
[10] Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理学报 59 8566]
[11] Orlandi A, Paul C R 2000 IEEE Trans. Micro. Theory Tech. 48 466
[12] Antonini G, Orlandi A, Pignari S A 2013 IEEE Trans. Electromagn. Compat. 55 639
[13] Paul C R 1992 IEEE Trans. Electromagn. Compat. 34 433
[14] Andrieu G, Koné L, Bocquet F, Démoulin B, Parmantier J P 2008 IEEE Trans. Electromagn. Compat. 50 175
[15] Andrieu G, Reineix A, Bunlon X, Parmantier J P, Koné L, Démoulin B 2009 IEEE Trans. Electromagn. Compat. 51 108
[16] Rumold J, Ter Haseborg J L 2000 IEEE International Symposium on Electromagnetic Compatibility Wsahington, USA, August 21-25, 2000 p185
[17] Chen J J, Lei Z Y, Wu S X, Li P J 2012 J. Microwaves S3 17 (in Chinese) [陈晋吉, 雷振亚, 吴仕喜, 李鹏杰 2012 微波学报 S3 17]
[18] Mejdoub Y, Rouijaa H, Ghammaz A 2009 IEEE International Conference on Microelectronics Marrakech, The Kingdom of Morocco, December 19-22, 2009 p320
[19] Nobakht R A, Ardalan S H, Shuey K 1989 IEEE International Conference on Communication Boston, USA, June 11-14, 1989 p1462
[20] Xie Y Z, Wang Z J, Wang Q S, Zhou H 2006 J. Tsinghua Univ. 46 499 (in Chinese) [谢彦召, 王赞基, 王群书, 周辉 2006 清华大学学报46 499]
[21] Lian Y X, Li H Y, Wu J Q, Yang S Y 2010 Trans. China Electrotech. Soc. 25 1 (in Chinese) [廉玉欣, 李浩昱, 吴建强, 杨世彦 2010 电工技术学报 25 1]
[22] Zhu D Y, Shi C S 2001 China Nationwide Conference on Electromagnetic Compatibility Guangzhou, China, November 1, 1989 p38
[23] Toki H, Sato K 2009 J. Phys. Soc. Jpn. 78 4201
-
[1] Lu T B, Cui X 2000 Chin. J. Radio 15 269 (in Chinese) [卢铁兵,崔翔 2000 电波科学学报 15 269]
[2] Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629
[3] Rudolph S M, Grbic A 2010 IEEE Trans. Antennas Propag. 58 1144
[4] Elfadel I M, Deutsch A, Smith H H, Rubin R J, Kopcsay G V 2004 IEEE Trans. Adv. Packag. 27 71
[5] Zhang H, Siebert K, Frei S, Wenzel T, Mickisch W 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, USA, August 18-22, 2008 p1
[6] Sarto M S, Tamburrano A 2006 IEEE International Symposium on Electromagnetic Compatibility Portland, USA, August 14-18, 2006 p466
[7] Agrawal A K, Price H J 1980 IEEE Trans. Electromagn. Compat. 22 119
[8] Wan J R, Liu Y P, Zhou H L 2010 Acta Phys. Sin. 59 2948 (in Chinese) [万健如, 刘英培, 周海亮 2010 物理学报 59 2948]
[9] Li Y Q, Fu Y Q, Zhang H, Yuan N C 2009 Acta Phys. Sin. 58 3949 (in Chinese) [李有权, 付云起, 张辉, 袁乃昌 2009 物理学报 58 3949]
[10] Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理学报 59 8566]
[11] Orlandi A, Paul C R 2000 IEEE Trans. Micro. Theory Tech. 48 466
[12] Antonini G, Orlandi A, Pignari S A 2013 IEEE Trans. Electromagn. Compat. 55 639
[13] Paul C R 1992 IEEE Trans. Electromagn. Compat. 34 433
[14] Andrieu G, Koné L, Bocquet F, Démoulin B, Parmantier J P 2008 IEEE Trans. Electromagn. Compat. 50 175
[15] Andrieu G, Reineix A, Bunlon X, Parmantier J P, Koné L, Démoulin B 2009 IEEE Trans. Electromagn. Compat. 51 108
[16] Rumold J, Ter Haseborg J L 2000 IEEE International Symposium on Electromagnetic Compatibility Wsahington, USA, August 21-25, 2000 p185
[17] Chen J J, Lei Z Y, Wu S X, Li P J 2012 J. Microwaves S3 17 (in Chinese) [陈晋吉, 雷振亚, 吴仕喜, 李鹏杰 2012 微波学报 S3 17]
[18] Mejdoub Y, Rouijaa H, Ghammaz A 2009 IEEE International Conference on Microelectronics Marrakech, The Kingdom of Morocco, December 19-22, 2009 p320
[19] Nobakht R A, Ardalan S H, Shuey K 1989 IEEE International Conference on Communication Boston, USA, June 11-14, 1989 p1462
[20] Xie Y Z, Wang Z J, Wang Q S, Zhou H 2006 J. Tsinghua Univ. 46 499 (in Chinese) [谢彦召, 王赞基, 王群书, 周辉 2006 清华大学学报46 499]
[21] Lian Y X, Li H Y, Wu J Q, Yang S Y 2010 Trans. China Electrotech. Soc. 25 1 (in Chinese) [廉玉欣, 李浩昱, 吴建强, 杨世彦 2010 电工技术学报 25 1]
[22] Zhu D Y, Shi C S 2001 China Nationwide Conference on Electromagnetic Compatibility Guangzhou, China, November 1, 1989 p38
[23] Toki H, Sato K 2009 J. Phys. Soc. Jpn. 78 4201
Catalog
Metrics
- Abstract views: 6471
- PDF Downloads: 366
- Cited By: 0