搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体激光阵列谱合束系统中光束串扰物理机制分析

庄英豪 傅芸 蔡伟 张青松 吴真 郭林辉 钟哲强 张彬

引用本文:
Citation:

半导体激光阵列谱合束系统中光束串扰物理机制分析

庄英豪, 傅芸, 蔡伟, 张青松, 吴真, 郭林辉, 钟哲强, 张彬

Analysis of physical mechanism of beam crosstalk in semiconductor laser array spectral-beam-combined system

Zhuang Ying-Hao, Fu Yun, Cai Wei, Zhang Qing-Song, Wu Zhen, Guo Lin-Hui, Zhong Zhe-Qiang, Zhang Bin
PDF
HTML
导出引用
  • 在外腔反馈半导体激光谱合束系统中, 由于半导体激光阵列的“smile”效应、外腔中光学元件制作误差等因素, 激光阵列一子单元发射光束经过外腔返回注入其他子单元, 在两子单元之间形成光束串扰并影响合束特性. 本文从耦合腔光束谐振角度出发, 基于光反馈半导体激光器速率方程, 构建了耦合腔谐振模型, 推导了激光器稳态输出时能在耦合腔中起振的光束模式. 结合耦合腔模式竞争机制与耦合腔谐振模型分析由两子单元间距变化引起的不同串扰对锁定光谱和合束效率的影响. 结果表明子单元间的串扰行为会造成光谱峰值下降、光谱偏移、边缘毛刺以及合束效率劣化. 相比距离更远的两子单元之间的高阶串扰, 距离更近的两子单元间的低阶串扰对合束特性的劣化程度更大. 最后, 为证明该模型的正确性和有效性, 对所得分析结果进行了实验验证, 实验观测到在串扰影响下的光谱结构与理论分析一致.
    In spectral beam combining systems based on a grating-external cavity, due to some factors such as the “smile” effect of the semiconductor laser array and the error of the optical components in the external cavity, the beam from one emitter transmits into the external cavity and then can return to other emitters, thereby forming beam crosstalk between the two emitters. In this work, in order to investigate the physical mechanism of beam crosstalk and the influence of beam crosstalk on beam properties such as locked spectra and beam combining efficiency, based on the optical feedback semiconductor rate equation, the beam modes that can stably oscillate in the coupling cavity are derived, and the coupling cavity oscillating model is built. With the consideration of the mode competition mechanism in the coupling cavity, the effects of different crosstalk between two emitters with different intervals on the locked spectra are analyzed in detail. The results show that crosstalk leads to the shift of the peak of locked spectrum and the generation of sub-peak. The crosstalk between two closer emitters has a more serious influence on the beam spectrum structure, combined beam spot, and combining efficiency. The combining efficiencies influencing the 1st, 2nd and 3rd crosstalk are 45.5%, 50.2%, and 63.8%, respectively (When there is no crosstalk, the efficiency is 80.1%). Finally, the results of the theoretical analysis are verified experimentally, and the experimentally observed spectra under the influence of crosstalk show phenomena such as peak degradation, peak shift, edge burrs, and side lobes in spectra, which are consistent with the theoretical predictions. Moreover, according to the simulation results and experimental observations, it is found that the crosstalk can be suppressed to a certain extent by increasing the spacing between emitters, and the Galileo telescope system is suggested to suppress crosstalk and optimize the spectral structure and beam combining efficiency. Compared with the Kepler telescope structure, the Galileo telescope does not have a real focal point, which can prevent the local power from being too high, thereby damaging the optical components.
      通信作者: 吴真, wuzhen1333@163.com
    • 基金项目: 四川省科技厅中央引导地方项目基金(批准号: 2021ZYD0036)、国家自然科学基金(批准号: 61905203)和中国科学院自适应光学重点实验室(批准号: LAOF1801)资助的课题.
      Corresponding author: Wu Zhen, wuzhen1333@163.com
    • Funds: Project supported by the Department of Science and Technology of Sichuan Province, China (Grant No. 2021ZYD0036), the National Natural Science Foundation of China (Grant No. 61905203), and the Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, China (Grant No. LAOF1801).
    [1]

    Yan Y X, Zheng Y, Sun H G, Duan J A 2021 Front. Phys. 9 1Google Scholar

    [2]

    Verdaasdonk R M, Borst C 1991 Appl. Opt. 30 2172Google Scholar

    [3]

    Extance A 2015 Nature 521 408Google Scholar

    [4]

    Brauch U, Loosen P, Opower H 2000 Appl. Phys. 78 303Google Scholar

    [5]

    Sanchez-Rubio A, Fan T Y, Augst S J, Goyal A K, Creedon K J, Gopinath J T, Daneu V, Chann B, Huang R 2014 Lincoln Lab. J. 20 52

    [6]

    Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B 2010 Opt. Express 18 893Google Scholar

    [7]

    Hecht J 2012 Laser Focus World 48 50

    [8]

    Huang R K, Chann B, Burgess J, Lochman B, Zhou W, Cruz M, Cook R, Dugmore D, Shattuck J, Tayebati R 2015 Proc. SPIE 9730 97300C-1Google Scholar

    [9]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384Google Scholar

    [10]

    Ma H J, Xiao Y, Hu C, Song Y Y, Tang X H 2021 Appl. Opt. 60 8213Google Scholar

    [11]

    Song Y Y, Yu X, Hu C, Wang P, Ma H J, Tang X H 2021 Appl. Opt. 61 3390Google Scholar

    [12]

    Wu Z, Yang L, Zhang B 2017 Appl. Opt. 56 1Google Scholar

    [13]

    Meng H C, Sun T Y, Tan H, Yu J H, Du W C, Tian F, Li J M, Gao S X, Wang X J, Wu D Y 2015 Opt. Express 23 21819Google Scholar

    [14]

    Zhu Z D, Gou L, Jiang M H, Hui Y L, Lei H, Li Q 2014 Opt. Express 22 17804Google Scholar

    [15]

    Lang R, Kobayashi K 1980 IEEE J. Quant. Electron. 16 347Google Scholar

    [16]

    Memon F A, Morichetti F, Arain Z A, Korai U A, Melloni A 2019 Wireless Pers. Commun. 106 2149Google Scholar

    [17]

    王安帮 2006 硕士学位论文 (太原: 太原理工大学)

    Wang A B 2006 M. S. Dissertation (Taiyuan: Taiyuan University of Science and Technology) (in Chinese)

    [18]

    Binder J O, Cormack G D 1989 IEEE J. Quant. Electron. 25 2255Google Scholar

    [19]

    Tromborg B, Osmundsen J H, Olesen H 1984 IEEE J. Quant. Electron. QE-20 1023Google Scholar

    [20]

    Gong H, Liu Z G, Zhou Y L, Zhang W B, Lv T 2014 Appl. Opt. 53 694Google Scholar

    [21]

    钟哲强, 杨 磊, 胡小川, 张 彬 2015 中国激光 42 1002010Google Scholar

    Zhong Z Q, Yang L, Hu X C, Zhang B 2015 Chin. J. Lasers 42 1002010Google Scholar

    [22]

    Yang L, Wu Z, Zhong Z Q, Zhang B 2017 Opt. Commun. 384 30Google Scholar

    [23]

    吴肖杰 2018 硕士学位论文 (长春: 长春理工大学)

    Wu X J 2018 M. S. Dissertation (Changchun: Changchun University of Science and Technology) (in Chinese)

  • 图 1  外腔反馈光谱合束原理图

    Fig. 1.  SBC with external cavity feedback.

    图 2  谱合束实验装置图

    Fig. 2.  Experimental installing of SBC.

    图 3  一阶串扰对光束特性的影响 (a) 自激振荡与串扰相位图; (b) 锁定光谱; (c) 合束光斑; (d) 实验观测一阶串扰下的光谱结构

    Fig. 3.  Effect of 1st crosstalk on beam properties: (a) Self-oscillation and crosstalk phase diagram; (b) the spectral structure; (c) beam spot; (d) experimental measurement of spectra.

    图 4  二阶串扰对合束特性的影响 (a) 自激振荡与串扰相位图; (b) 锁定光谱; (c) 合束光斑; (d) 实验观测二阶串扰下的光谱结构

    Fig. 4.  Effect of 2nd crosstalk on beam properties: (a) Self-oscillation and crosstalk phase diagram; (b) the spectral structure; (c) beam spot; (d) experimental measurement of spectra.

    图 5  三阶串扰对合束特性的影响 (a) 自激振荡与串扰相位图; (b) 锁定光谱; (c) 合束光斑; (d) 实验观测三阶串扰下的光谱结构

    Fig. 5.  Effect of 3 rd crosstalk on beam properties: (a) Self-oscillation and crosstalk phase diagram; (b) the spectral structure; (c) beam spot; (d) experimental measurement of spectra.

    图 6  (a) 抑制二阶串扰后的光谱; (b) 抑制二阶串扰后的合束光斑

    Fig. 6.  Spectra (a) and beam spot (b) after suppressing the second-order crosstalk.

  • [1]

    Yan Y X, Zheng Y, Sun H G, Duan J A 2021 Front. Phys. 9 1Google Scholar

    [2]

    Verdaasdonk R M, Borst C 1991 Appl. Opt. 30 2172Google Scholar

    [3]

    Extance A 2015 Nature 521 408Google Scholar

    [4]

    Brauch U, Loosen P, Opower H 2000 Appl. Phys. 78 303Google Scholar

    [5]

    Sanchez-Rubio A, Fan T Y, Augst S J, Goyal A K, Creedon K J, Gopinath J T, Daneu V, Chann B, Huang R 2014 Lincoln Lab. J. 20 52

    [6]

    Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B 2010 Opt. Express 18 893Google Scholar

    [7]

    Hecht J 2012 Laser Focus World 48 50

    [8]

    Huang R K, Chann B, Burgess J, Lochman B, Zhou W, Cruz M, Cook R, Dugmore D, Shattuck J, Tayebati R 2015 Proc. SPIE 9730 97300C-1Google Scholar

    [9]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384Google Scholar

    [10]

    Ma H J, Xiao Y, Hu C, Song Y Y, Tang X H 2021 Appl. Opt. 60 8213Google Scholar

    [11]

    Song Y Y, Yu X, Hu C, Wang P, Ma H J, Tang X H 2021 Appl. Opt. 61 3390Google Scholar

    [12]

    Wu Z, Yang L, Zhang B 2017 Appl. Opt. 56 1Google Scholar

    [13]

    Meng H C, Sun T Y, Tan H, Yu J H, Du W C, Tian F, Li J M, Gao S X, Wang X J, Wu D Y 2015 Opt. Express 23 21819Google Scholar

    [14]

    Zhu Z D, Gou L, Jiang M H, Hui Y L, Lei H, Li Q 2014 Opt. Express 22 17804Google Scholar

    [15]

    Lang R, Kobayashi K 1980 IEEE J. Quant. Electron. 16 347Google Scholar

    [16]

    Memon F A, Morichetti F, Arain Z A, Korai U A, Melloni A 2019 Wireless Pers. Commun. 106 2149Google Scholar

    [17]

    王安帮 2006 硕士学位论文 (太原: 太原理工大学)

    Wang A B 2006 M. S. Dissertation (Taiyuan: Taiyuan University of Science and Technology) (in Chinese)

    [18]

    Binder J O, Cormack G D 1989 IEEE J. Quant. Electron. 25 2255Google Scholar

    [19]

    Tromborg B, Osmundsen J H, Olesen H 1984 IEEE J. Quant. Electron. QE-20 1023Google Scholar

    [20]

    Gong H, Liu Z G, Zhou Y L, Zhang W B, Lv T 2014 Appl. Opt. 53 694Google Scholar

    [21]

    钟哲强, 杨 磊, 胡小川, 张 彬 2015 中国激光 42 1002010Google Scholar

    Zhong Z Q, Yang L, Hu X C, Zhang B 2015 Chin. J. Lasers 42 1002010Google Scholar

    [22]

    Yang L, Wu Z, Zhong Z Q, Zhang B 2017 Opt. Commun. 384 30Google Scholar

    [23]

    吴肖杰 2018 硕士学位论文 (长春: 长春理工大学)

    Wu X J 2018 M. S. Dissertation (Changchun: Changchun University of Science and Technology) (in Chinese)

  • [1] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [2] 乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝. Tm,Ho双掺调Q激光系统理论与实验研究. 物理学报, 2014, 63(21): 214205. doi: 10.7498/aps.63.214205
    [3] 徐艳, 陈飞, 谢冀江, 李殿军, 杨贵龙, 高飞, 郭劲. 半导体抽运铯蒸气激光器阈值特性分析. 物理学报, 2014, 63(17): 174201. doi: 10.7498/aps.63.174201
    [4] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [5] 赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓. 薄片激光器热效应及其对输出功率的影响. 物理学报, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [6] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [7] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [8] 王浩, 刘国权, 岳景朝, 栾军华, 秦湘阁. MacPherson-Srolovitz晶粒长大速率方程的仿真验证. 物理学报, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [9] 李小燕, 郑志强, 冯卓宏, 刘 璟, 姜翠华, 孔令凯, 明 海. 掺铒锆钛酸铅镧陶瓷的上转换动力学分析. 物理学报, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [10] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究. 物理学报, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [11] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [12] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [13] 於海武, 徐美健, 段文涛, 隋 展. Yb离子抽运动力学及脉冲储能特性研究. 物理学报, 2007, 56(7): 4158-4168. doi: 10.7498/aps.56.4158
    [14] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究. 物理学报, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [15] 吴朝晖, 宋 峰, 刘淑静, 蔡 虹, 苏 静, 田建国, 张光寅. LD抽运Er3+,Yb3+共掺磷酸盐玻璃被动调Q激光器的理论分析和数值计算. 物理学报, 2006, 55(9): 4659-4664. doi: 10.7498/aps.55.4659
    [16] 张新陆, 王月珠. 能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响. 物理学报, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [17] 宋 峰, 苏瑞渊, 傅 强, 覃 斌, 田建国, 张光寅. 高浓度镱铒共掺磷酸盐光纤放大器增益特性. 物理学报, 2005, 54(11): 5228-5232. doi: 10.7498/aps.54.5228
    [18] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [19] 付圣贵, 范万德, 张 强, 王 志, 李丽君, 张春书, 袁树忠, 董孝义. 光纤光栅选频掺Yb3+双包层光纤激光器. 物理学报, 2004, 53(12): 4262-4267. doi: 10.7498/aps.53.4262
    [20] 宋峰, 孟凡臻, 丁欣, 张潮波, 杨嘉, 张光寅. 1.54μmEr3+,Yb3+共掺玻璃激光器的速率方程及数值分析. 物理学报, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
计量
  • 文章访问数:  4559
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 修回日期:  2022-10-20
  • 上网日期:  2022-11-01
  • 刊出日期:  2023-01-20

/

返回文章
返回