-
X-ray emissionproduced by highly charged ions with the energy range near the Bohr velocity involves complicated atomic process. However, duo to the limitation of experimental conditions, the relevant researches are nearly absent. It is unclear whether the existing theory is applicable in such an energy range. This needs further exploring. In the present work, K X-ray spectra of Al excited by H+, He2+ and highly charged heavy ions I22+ and Xe20+ are investigated by using an Si drift X-ray detector in the energy range near the Bohr velocity. The X-ray production cross sections are extracted from the X-ray counts and compared with the theoretical simulations from PWBA, ECPSSR and modified BEA model. It is indicated that the cross section increases with the augment of projectile energy. With the same incident energy per nucleon, the cross section induced by highly charged heavy ions is a factor of about 104 larger than that by light ions . With the impact of H+ and He2+ ions, the K-shell electrons are mainly knocked off through the direct Coulomb ionization, and the X-ray emission cross section can be well predicted by ECPSSR theory. For the bombardment of highly charged heavy ions I22+ and Xe20+, except for the Coulomb ionization, the orbital electrons can also be excited by electron capture. The BEA simulation after being modified by both Coulomb repulsion and effective charge can well predict the X-ray production cross section.
-
Keywords:
- ions /
- X-ray /
- production cross section /
- BEA /
- ECPSSR
[1] Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 416 94Google Scholar
[2] Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar
[3] Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644Google Scholar
[4] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar
Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar
[5] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar
Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar
[6] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[7] 张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006Google Scholar
Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci Sin-Phys. Mech. Astron. 46 073006Google Scholar
[8] Gryzinski M 1965 Phys. Rev. A 138 A336Google Scholar
[9] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data Tables 24 1Google Scholar
[10] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[11] Meyerhof W E, Anholt R, Saylor T K, Lazarus S M, Little A, Chase L F 1976 Phys. Rev. A 14 1653Google Scholar
[12] Lapicki G 1989 J. Phys. Chem. Ref. Date 18 111Google Scholar
[13] Lapicki G 2005 X-ray Spectrom 34 269Google Scholar
[14] Miranda J, Lapicki G 2014 At. Data Nucl. Data Tables 100 651Google Scholar
[15] Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969Google Scholar
[16] 梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青 2021 物理学报 70 183201Google Scholar
Liang C H, Zhang X A, Zhou X M, Zhao Y T, Xiao G Q 2021 Acta Phys. Sin. 70 183201Google Scholar
[17] Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liu Y, Zhang Y N, Liang C H, Zhao Y T, Zhang X A 2022 Chin. Phys. B 31 063204Google Scholar
[18] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar
Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar
[19] Bearden J A 1967 Rev. Mod. Phys 39 78Google Scholar
[20] Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8 329Google Scholar
[21] Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar
[22] Campbell J L 2009 At. Data Nucl. Data Tables 95 115Google Scholar
[23] Thompson A C, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson Al, Underwood J H, Kim K J, Kirz J, Lindau I, Pianetta P, Winick H, Williams G P, Scofield J H (Edited by Thompson A C, Vaughan D) 2001 X-Ray Data Book (http://xdb.lbl.gov/)
[24] Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar
[25] Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar
[26] Sarkadi L, Mukoyama T 1980 J. Phys. B Atom. Mol. Phys. 13 2255Google Scholar
[27] Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar
[28] Banaś D, Pajek M, Semaniak J, Braziewicza J, Kubala-Kukuśa A, Majewskaa U, Czyżewskib T, Jaskółab M, Kretschmerc W, Mukoyamad T, Trautmanne D 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar
[29] Basbas G, Brandt W, Roman L 1973 Phys. Rev. A 7 983Google Scholar
[30] Ziegler J F, Ziegler M D, Biersack J P 2019 Treatise on Heavy-Ion Science (Springer) pp93–129
[31] Pajek M, Kobzev A P, Sandrik R, Iikhamov R A, Kusmurodov S H 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 42 346Google Scholar
[32] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2021 物理学报 65 027901Google Scholar
Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2021 Acta Phys. Sin. 65 027901Google Scholar
[33] Cohen D D, Harrigan M 1985 At. Data Nucl. Data Tables 33 255Google Scholar
[34] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar
[35] Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar
[36] Brandt W, Laubert R, Sellin I 1966 Phys. Rev. 151 56Google Scholar
[37] Shima K 1978 Phys. Lett. A 67 351Google Scholar
[38] Khan J M, Potter D L 1964 Phys. Rev. 133 A 890
[39] Khan J M, Potter O L, Worley R D 1965 Phys. Rev. 139 A 1735
[40] Needham P B, Jr., Sartwell B O 1970 Phys. Rev. A 2 27Google Scholar
[41] Shima K, Makino I, Sakisaka M 1971 Jpn. J. Phys. 31 971Google Scholar
[42] Magon C, Milazzo M, Pizzi C, Porro F, Rota A, Ric-cobono G 1979 Nuovo. Cimento. A 54 277Google Scholar
[43] Morita S, Kamiya M 1997 Chin. J. Phys. 15 199
[44] Slater J C 1930 Phys. Rev. 36 57Google Scholar
[45] Liu S Z 1986 Atomic Structure and Chemical Periodic System of Elements (Beijing: Science and Technology Press) p108
-
图 1 实验装置示意图(1–离子源; 2–分析磁铁; 3–高压加速平台; 4–光阑; 5–90°偏转磁铁; 6–四级透镜; 7–60°偏转磁铁; 8–超高真空靶室; 9–靶; 10–X射线探测器; 11–X射线记录系统; 12–穿透式法拉第筒; 13–法拉第筒; 14–离子计数记录系统; FC为束流线上可插拔式法拉第筒)
Figure 1. Schematic drawing of experiment setup: 1–ECR ion source; 2–analyzing magnet; 3–high volt accelerate platform; 4–barrier; 5–90° deflection magnet; 6–magnetic quadrupled lens; 7–60° deflection magnet; 8–ultrahigh vacuum target chamber; 9–target; 10–silicon drift detector; 11–X-ray recording system; 12–penetrable faraday cup; 13–common faraday cup; 14–projectile number recording system, FC is the faraday cup.
表 1 不同离子激发Al的 K X射线实验发射截面
Table 1. Al K X-ray cross section excited by various projectile.
离子种类 入射能量/MeV 截面/barn H+ 0.05 (1.06 ± 0.17) × 10–1 0.10 2.15 ± 0.34 0.15 9.06 ± 1.45 0.20 (2.03 ± 0.33) × 101 0.25 (4.50 ± 0.72) × 101 0.30 (7.73 ± 0.12) × 101 He2+ 0.10 (5.98 ± 0.96) × 10–3 0.20 (2.14 ± 0.34) × 10–1 0.30 1.10 ± 0.18 0.40 3.88 ± 0.62 0.50 9.25 ± 1.48 0.60 (2.42 ± 0.39) × 101 I22+ 2.00 (3.93 ± 0.63) × 101 2.50 (4.73 ± 0.78) × 101 3.00 (6.09 ± 0.97) × 101 3.50 (6.84 ±1.09) × 101 4.00 (7.57 ± 1.21) × 101 4.50 (7.99 ± 1.28) × 101 5.00 (9.18 ± 1.47) × 101 Xe20+ 1.20 (1.94 ± 0.31) × 101 2.40 (4.67 ± 0.74) × 101 3.00 (6.32 ± 1.01) × 101 3.60 (7.68 ± 1.23) × 101 4.80 (1.04 ± 0.17) × 102 6.00 (1.21 ± 0.19) × 102 -
[1] Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 416 94Google Scholar
[2] Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar
[3] Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644Google Scholar
[4] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar
Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar
[5] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar
Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar
[6] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[7] 张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006Google Scholar
Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci Sin-Phys. Mech. Astron. 46 073006Google Scholar
[8] Gryzinski M 1965 Phys. Rev. A 138 A336Google Scholar
[9] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data Tables 24 1Google Scholar
[10] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar
[11] Meyerhof W E, Anholt R, Saylor T K, Lazarus S M, Little A, Chase L F 1976 Phys. Rev. A 14 1653Google Scholar
[12] Lapicki G 1989 J. Phys. Chem. Ref. Date 18 111Google Scholar
[13] Lapicki G 2005 X-ray Spectrom 34 269Google Scholar
[14] Miranda J, Lapicki G 2014 At. Data Nucl. Data Tables 100 651Google Scholar
[15] Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969Google Scholar
[16] 梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青 2021 物理学报 70 183201Google Scholar
Liang C H, Zhang X A, Zhou X M, Zhao Y T, Xiao G Q 2021 Acta Phys. Sin. 70 183201Google Scholar
[17] Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liu Y, Zhang Y N, Liang C H, Zhao Y T, Zhang X A 2022 Chin. Phys. B 31 063204Google Scholar
[18] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar
Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar
[19] Bearden J A 1967 Rev. Mod. Phys 39 78Google Scholar
[20] Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8 329Google Scholar
[21] Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar
[22] Campbell J L 2009 At. Data Nucl. Data Tables 95 115Google Scholar
[23] Thompson A C, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson Al, Underwood J H, Kim K J, Kirz J, Lindau I, Pianetta P, Winick H, Williams G P, Scofield J H (Edited by Thompson A C, Vaughan D) 2001 X-Ray Data Book (http://xdb.lbl.gov/)
[24] Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar
[25] Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar
[26] Sarkadi L, Mukoyama T 1980 J. Phys. B Atom. Mol. Phys. 13 2255Google Scholar
[27] Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar
[28] Banaś D, Pajek M, Semaniak J, Braziewicza J, Kubala-Kukuśa A, Majewskaa U, Czyżewskib T, Jaskółab M, Kretschmerc W, Mukoyamad T, Trautmanne D 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar
[29] Basbas G, Brandt W, Roman L 1973 Phys. Rev. A 7 983Google Scholar
[30] Ziegler J F, Ziegler M D, Biersack J P 2019 Treatise on Heavy-Ion Science (Springer) pp93–129
[31] Pajek M, Kobzev A P, Sandrik R, Iikhamov R A, Kusmurodov S H 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 42 346Google Scholar
[32] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2021 物理学报 65 027901Google Scholar
Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2021 Acta Phys. Sin. 65 027901Google Scholar
[33] Cohen D D, Harrigan M 1985 At. Data Nucl. Data Tables 33 255Google Scholar
[34] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar
[35] Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar
[36] Brandt W, Laubert R, Sellin I 1966 Phys. Rev. 151 56Google Scholar
[37] Shima K 1978 Phys. Lett. A 67 351Google Scholar
[38] Khan J M, Potter D L 1964 Phys. Rev. 133 A 890
[39] Khan J M, Potter O L, Worley R D 1965 Phys. Rev. 139 A 1735
[40] Needham P B, Jr., Sartwell B O 1970 Phys. Rev. A 2 27Google Scholar
[41] Shima K, Makino I, Sakisaka M 1971 Jpn. J. Phys. 31 971Google Scholar
[42] Magon C, Milazzo M, Pizzi C, Porro F, Rota A, Ric-cobono G 1979 Nuovo. Cimento. A 54 277Google Scholar
[43] Morita S, Kamiya M 1997 Chin. J. Phys. 15 199
[44] Slater J C 1930 Phys. Rev. 36 57Google Scholar
[45] Liu S Z 1986 Atomic Structure and Chemical Periodic System of Elements (Beijing: Science and Technology Press) p108
Catalog
Metrics
- Abstract views: 3731
- PDF Downloads: 48
- Cited By: 0