Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K-shell X-ray of Al produced by collisions of ions with near Bohr velocities

Zhou Xian-Ming Wei Jing Cheng Rui Liang Chang-Hui Chen Yan-Hong Zhao Yong-Tao Zhang Xiao-An

Citation:

K-shell X-ray of Al produced by collisions of ions with near Bohr velocities

Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An
PDF
HTML
Get Citation
  • X-ray emissionproduced by highly charged ions with the energy range near the Bohr velocity involves complicated atomic process. However, duo to the limitation of experimental conditions, the relevant researches are nearly absent. It is unclear whether the existing theory is applicable in such an energy range. This needs further exploring. In the present work, K X-ray spectra of Al excited by H+, He2+ and highly charged heavy ions I22+ and Xe20+ are investigated by using an Si drift X-ray detector in the energy range near the Bohr velocity. The X-ray production cross sections are extracted from the X-ray counts and compared with the theoretical simulations from PWBA, ECPSSR and modified BEA model. It is indicated that the cross section increases with the augment of projectile energy. With the same incident energy per nucleon, the cross section induced by highly charged heavy ions is a factor of about 104 larger than that by light ions . With the impact of H+ and He2+ ions, the K-shell electrons are mainly knocked off through the direct Coulomb ionization, and the X-ray emission cross section can be well predicted by ECPSSR theory. For the bombardment of highly charged heavy ions I22+ and Xe20+, except for the Coulomb ionization, the orbital electrons can also be excited by electron capture. The BEA simulation after being modified by both Coulomb repulsion and effective charge can well predict the X-ray production cross section.
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017 YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096), the Acadimic Leader of Xianyang Normal University, China (Grant No. XSYXSD202108), the Scientific Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2021 JQ-812), and the Key Cultivation Project of Xianyang Normal University, China (Grant No. XSYK21037).
    [1]

    Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 416 94Google Scholar

    [2]

    Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar

    [3]

    Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644Google Scholar

    [4]

    柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar

    Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar

    [5]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006Google Scholar

    Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci Sin-Phys. Mech. Astron. 46 073006Google Scholar

    [8]

    Gryzinski M 1965 Phys. Rev. A 138 A336Google Scholar

    [9]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data Tables 24 1Google Scholar

    [10]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [11]

    Meyerhof W E, Anholt R, Saylor T K, Lazarus S M, Little A, Chase L F 1976 Phys. Rev. A 14 1653Google Scholar

    [12]

    Lapicki G 1989 J. Phys. Chem. Ref. Date 18 111Google Scholar

    [13]

    Lapicki G 2005 X-ray Spectrom 34 269Google Scholar

    [14]

    Miranda J, Lapicki G 2014 At. Data Nucl. Data Tables 100 651Google Scholar

    [15]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969Google Scholar

    [16]

    梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青 2021 物理学报 70 183201Google Scholar

    Liang C H, Zhang X A, Zhou X M, Zhao Y T, Xiao G Q 2021 Acta Phys. Sin. 70 183201Google Scholar

    [17]

    Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liu Y, Zhang Y N, Liang C H, Zhao Y T, Zhang X A 2022 Chin. Phys. B 31 063204Google Scholar

    [18]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar

    [19]

    Bearden J A 1967 Rev. Mod. Phys 39 78Google Scholar

    [20]

    Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8 329Google Scholar

    [21]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [22]

    Campbell J L 2009 At. Data Nucl. Data Tables 95 115Google Scholar

    [23]

    Thompson A C, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson Al, Underwood J H, Kim K J, Kirz J, Lindau I, Pianetta P, Winick H, Williams G P, Scofield J H (Edited by Thompson A C, Vaughan D) 2001 X-Ray Data Book (http://xdb.lbl.gov/)

    [24]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [25]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [26]

    Sarkadi L, Mukoyama T 1980 J. Phys. B Atom. Mol. Phys. 13 2255Google Scholar

    [27]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [28]

    Banaś D, Pajek M, Semaniak J, Braziewicza J, Kubala-Kukuśa A, Majewskaa U, Czyżewskib T, Jaskółab M, Kretschmerc W, Mukoyamad T, Trautmanne D 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [29]

    Basbas G, Brandt W, Roman L 1973 Phys. Rev. A 7 983Google Scholar

    [30]

    Ziegler J F, Ziegler M D, Biersack J P 2019 Treatise on Heavy-Ion Science (Springer) pp93–129

    [31]

    Pajek M, Kobzev A P, Sandrik R, Iikhamov R A, Kusmurodov S H 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 42 346Google Scholar

    [32]

    周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2021 物理学报 65 027901Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2021 Acta Phys. Sin. 65 027901Google Scholar

    [33]

    Cohen D D, Harrigan M 1985 At. Data Nucl. Data Tables 33 255Google Scholar

    [34]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [35]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [36]

    Brandt W, Laubert R, Sellin I 1966 Phys. Rev. 151 56Google Scholar

    [37]

    Shima K 1978 Phys. Lett. A 67 351Google Scholar

    [38]

    Khan J M, Potter D L 1964 Phys. Rev. 133 A 890

    [39]

    Khan J M, Potter O L, Worley R D 1965 Phys. Rev. 139 A 1735

    [40]

    Needham P B, Jr., Sartwell B O 1970 Phys. Rev. A 2 27Google Scholar

    [41]

    Shima K, Makino I, Sakisaka M 1971 Jpn. J. Phys. 31 971Google Scholar

    [42]

    Magon C, Milazzo M, Pizzi C, Porro F, Rota A, Ric-cobono G 1979 Nuovo. Cimento. A 54 277Google Scholar

    [43]

    Morita S, Kamiya M 1997 Chin. J. Phys. 15 199

    [44]

    Slater J C 1930 Phys. Rev. 36 57Google Scholar

    [45]

    Liu S Z 1986 Atomic Structure and Chemical Periodic System of Elements (Beijing: Science and Technology Press) p108

  • 图 1  实验装置示意图(1–离子源; 2–分析磁铁; 3–高压加速平台; 4–光阑; 5–90°偏转磁铁; 6–四级透镜; 7–60°偏转磁铁; 8–超高真空靶室; 9–靶; 10–X射线探测器; 11–X射线记录系统; 12–穿透式法拉第筒; 13–法拉第筒; 14–离子计数记录系统; FC为束流线上可插拔式法拉第筒)

    Figure 1.  Schematic drawing of experiment setup: 1–ECR ion source; 2–analyzing magnet; 3–high volt accelerate platform; 4–barrier; 5–90° deflection magnet; 6–magnetic quadrupled lens; 7–60° deflection magnet; 8–ultrahigh vacuum target chamber; 9–target; 10–silicon drift detector; 11–X-ray recording system; 12–penetrable faraday cup; 13–common faraday cup; 14–projectile number recording system, FC is the faraday cup.

    图 2  SDD在0.5—4 keV范围内的探测效率

    Figure 2.  Efficiency of the SDD detector in the energy region of 0.5–4.0 keV.

    图 3  不同离子入射激发Al的典型X射线谱(曲线为高斯拟合, xc为谱线中心能量, W为谱线的半高全宽)

    Figure 3.  Typical X-ray spectrum of Al induced by various projectile (The curve is Gauss fitting, xc and W is the central energy and full width at half maximum of the spectral line, respectively).

    图 4  不同离子激发Al的K壳层X射线产生截面随单核子能量变化

    Figure 4.  Al K X-ray cross section excited by various projectile

    图 5  H+激发的发射实验截面与理论模拟

    Figure 5.  Experimental cross section excited by H+, and theory simulations.

    图 6  He2+激发的发射实验截面与理论模拟

    Figure 6.  Experimental cross section excited by He2+, and theory simulations.

    图 7  I22+激发的实验发射截面与理论模拟

    Figure 7.  Experimental cross section excited by I22+, and theory simulations.

    图 8  Xe20+激发的实验发射截面与理论模拟

    Figure 8.  Experimental cross section excited by Xe20+, and theory simulations.

    表 1  不同离子激发Al的 K X射线实验发射截面

    Table 1.  Al K X-ray cross section excited by various projectile.

    离子种类入射能量/MeV截面/barn
    H+
    0.05(1.06 ± 0.17) × 10–1
    0.102.15 ± 0.34
    0.159.06 ± 1.45
    0.20(2.03 ± 0.33) × 101
    0.25(4.50 ± 0.72) × 101
    0.30(7.73 ± 0.12) × 101
    He2+
    0.10(5.98 ± 0.96) × 10–3
    0.20(2.14 ± 0.34) × 10–1
    0.301.10 ± 0.18
    0.403.88 ± 0.62
    0.509.25 ± 1.48
    0.60(2.42 ± 0.39) × 101
    I22+
    2.00(3.93 ± 0.63) × 101
    2.50(4.73 ± 0.78) × 101
    3.00(6.09 ± 0.97) × 101
    3.50(6.84 ±1.09) × 101
    4.00(7.57 ± 1.21) × 101
    4.50(7.99 ± 1.28) × 101
    5.00(9.18 ± 1.47) × 101
    Xe20+
    1.20(1.94 ± 0.31) × 101
    2.40(4.67 ± 0.74) × 101
    3.00(6.32 ± 1.01) × 101
    3.60(7.68 ± 1.23) × 101
    4.80(1.04 ± 0.17) × 102
    6.00(1.21 ± 0.19) × 102
    DownLoad: CSV
  • [1]

    Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 416 94Google Scholar

    [2]

    Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar

    [3]

    Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644Google Scholar

    [4]

    柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar

    Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar

    [5]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006Google Scholar

    Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci Sin-Phys. Mech. Astron. 46 073006Google Scholar

    [8]

    Gryzinski M 1965 Phys. Rev. A 138 A336Google Scholar

    [9]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data Tables 24 1Google Scholar

    [10]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [11]

    Meyerhof W E, Anholt R, Saylor T K, Lazarus S M, Little A, Chase L F 1976 Phys. Rev. A 14 1653Google Scholar

    [12]

    Lapicki G 1989 J. Phys. Chem. Ref. Date 18 111Google Scholar

    [13]

    Lapicki G 2005 X-ray Spectrom 34 269Google Scholar

    [14]

    Miranda J, Lapicki G 2014 At. Data Nucl. Data Tables 100 651Google Scholar

    [15]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969Google Scholar

    [16]

    梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青 2021 物理学报 70 183201Google Scholar

    Liang C H, Zhang X A, Zhou X M, Zhao Y T, Xiao G Q 2021 Acta Phys. Sin. 70 183201Google Scholar

    [17]

    Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liu Y, Zhang Y N, Liang C H, Zhao Y T, Zhang X A 2022 Chin. Phys. B 31 063204Google Scholar

    [18]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar

    [19]

    Bearden J A 1967 Rev. Mod. Phys 39 78Google Scholar

    [20]

    Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8 329Google Scholar

    [21]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [22]

    Campbell J L 2009 At. Data Nucl. Data Tables 95 115Google Scholar

    [23]

    Thompson A C, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson Al, Underwood J H, Kim K J, Kirz J, Lindau I, Pianetta P, Winick H, Williams G P, Scofield J H (Edited by Thompson A C, Vaughan D) 2001 X-Ray Data Book (http://xdb.lbl.gov/)

    [24]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [25]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [26]

    Sarkadi L, Mukoyama T 1980 J. Phys. B Atom. Mol. Phys. 13 2255Google Scholar

    [27]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [28]

    Banaś D, Pajek M, Semaniak J, Braziewicza J, Kubala-Kukuśa A, Majewskaa U, Czyżewskib T, Jaskółab M, Kretschmerc W, Mukoyamad T, Trautmanne D 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [29]

    Basbas G, Brandt W, Roman L 1973 Phys. Rev. A 7 983Google Scholar

    [30]

    Ziegler J F, Ziegler M D, Biersack J P 2019 Treatise on Heavy-Ion Science (Springer) pp93–129

    [31]

    Pajek M, Kobzev A P, Sandrik R, Iikhamov R A, Kusmurodov S H 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 42 346Google Scholar

    [32]

    周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2021 物理学报 65 027901Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2021 Acta Phys. Sin. 65 027901Google Scholar

    [33]

    Cohen D D, Harrigan M 1985 At. Data Nucl. Data Tables 33 255Google Scholar

    [34]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [35]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [36]

    Brandt W, Laubert R, Sellin I 1966 Phys. Rev. 151 56Google Scholar

    [37]

    Shima K 1978 Phys. Lett. A 67 351Google Scholar

    [38]

    Khan J M, Potter D L 1964 Phys. Rev. 133 A 890

    [39]

    Khan J M, Potter O L, Worley R D 1965 Phys. Rev. 139 A 1735

    [40]

    Needham P B, Jr., Sartwell B O 1970 Phys. Rev. A 2 27Google Scholar

    [41]

    Shima K, Makino I, Sakisaka M 1971 Jpn. J. Phys. 31 971Google Scholar

    [42]

    Magon C, Milazzo M, Pizzi C, Porro F, Rota A, Ric-cobono G 1979 Nuovo. Cimento. A 54 277Google Scholar

    [43]

    Morita S, Kamiya M 1997 Chin. J. Phys. 15 199

    [44]

    Slater J C 1930 Phys. Rev. 36 57Google Scholar

    [45]

    Liu S Z 1986 Atomic Structure and Chemical Periodic System of Elements (Beijing: Science and Technology Press) p108

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An. W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u. Acta Physica Sinica, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [3] Zhou Xian-Ming,  Wei Jing,  Cheng Rui,  Mei Ce-Xiang,  Zeng Li-Xia,  Wang Xing,  Liang Chang-Hui,  Zhao Yong-Tao,  Zhang Xiao-An. W L-shell X-ray emission induced by C6+ions in the energy range of several hundred MeV/u. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [4] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [5] Zhou Xian-Ming, Wei Jing, Cheng Rui, Zhao Yong-Tao, Zeng Li-Xia, Mei Ce-Xiang, Liang Chang-Hui, Li Yao-Zong, Zhang Xiao-An, Xiao Guo-Qing. I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets. Acta Physica Sinica, 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [6] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [7] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [8] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Ren Jie-Ru, Wang Xing, Lei Yu, Sun Yuan-Bo, Cheng Rei, Xu Ge, Zeng Li-Xia. K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target. Acta Physica Sinica, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [9] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [10] Xi Fa-Yuan, Lü Hui-Yi. Interactions between ions with different values of Ep/q and alumina capillaries. Acta Physica Sinica, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [11] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [12] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [13] Zou Xian-Rong, Shao Jian-Xiong, Chen Xi-Meng, Cui Ying. Kβ/Kα ratios and energies of the K-shell X-ray of Ar17+ ion in the interaction with metals. Acta Physica Sinica, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [14] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [15] Zhang Bo-Li, Yang Zhi-Hu, Du Shu-Bin, Chang Hong-Wei, Xue Ying-Li, Song Zhang-Yong, Zhu Ke-Xin, Tian Ye. Study of the L-subshell X-ray production cross sections of Au by 20—50 MeV O5+ bombardments. Acta Physica Sinica, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [16] Yang Zhi-Hu, Song Zhang-Yong, Cui Ying, Zhang Hong-Qiang, Ruan Fang-Fang, Shao Jian-Xiong, Du Juan, Liu Yu-Wen, Zhu Ke-Xin, Zhang Xiao-An, Shao Cao-Jie, Lu Rong-Chun, Yu De-Yang, Chen Xi-Meng, Cai Xiao-Hong. X-ray spectra produced by interaction of Ar16+ and Ar17+ with Zr. Acta Physica Sinica, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [18] Qiu Hua-Tan, Wang You-Nian, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [19] DAI ZHONG-LING, WANG YOU-NIAN, MA TENG-CAI. DYNAMICAL MODEL OF THE RADIO-FREQUENCY PLASMA SHEATH. Acta Physica Sinica, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  3731
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2022
  • Accepted Date:  07 September 2022
  • Available Online:  26 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回