Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K-X rays induced by helium-like C ions in thick target atoms of different metals

Mei Ce-Xiang Zhang Xiao-An Zhou Xian-Ming Liang Chang-Hui Zeng Li-Xia Zhang Yan-Ning Du Shu-Bin Guo Yi-Pan Yang Zhi-Hu

Citation:

K-X rays induced by helium-like C ions in thick target atoms of different metals

Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu
PDF
HTML
Get Citation
  • The physical process and experimental phenomena of the interaction between highly charged heavy ions and atoms are very complex, particularly in the intermediate energy region, because of the limitation of accelerator and existing theoretical analysis, less systematic researches, incomplete atomic data, and not so high accuracy. The research of celestial element X-ray data is more scarce and the research of X-ray data of celestial elements is even more scarce. Helium-like C ions with 15–55 MeV kinetic energy provided by the HI-13 MV series accelerator of the China Institute of Atomic Energy are used to bombard Fe, Ni, Nb and Mo thick targets. The HpGe detectors are used to measure the K-X ray emission, and the corresponding K-X ray emission cross sections are obtained. Due to the different ionization degrees of the shell layers of various target atoms, the branching intensity ratio of Kβ to Kα X rays emitted by Helium-like C ions interacting with Fe and Ni target atoms decreases with the increase of the kinetic energy of the incident ions, while the branching intensity ratio of K-X rays emitted by Nb and Mo target atoms does not change significantly. The K-X ray emission cross section of target atom is calculated by using the formula of thick target cross section, and compared with the results of different theoretical models and proton. The results show that with the increase of the kinetic energy of helium-like C ions, the total emission cross section of the Kβ and Kα X ray emitted from Fe and Ni target atoms are most consistent with the BEA correction model considering multiple ionization, and the total emission cross section of Kβ and Kα X ray emitted from Nb and Mo target atoms are closest to the theoretical values of PWBA model. When the energy of proton is the same as that of single nucleon C ion, the cross section of K-X ray produced by proton is about three orders of magnitude smaller than that produced by helium-like C ion.
      Corresponding author: Yang Zhi-Hu, z.yang@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12205247), the Natural Fundamental Science Research Project of Shaanxi Province, China (Grant No. 2023-JC-QN-0080), the Fundamental Science Research Project for Mathematics and Physics of Shaanxi Province, China (Grant No. 22JSQ040), the Qinglan Talents Training Project of Xianyang Normal University, China (Grant No. XSYQL201910), the Key Laboratory of Ion Beam and Optical Physics of Xianyang, China (Grant No. L2022-CXNL-ZDSYS-001), and Shaanxi University Students Innovation and Entrepreneurship Training Program, China (Grant No. S202010722055S).
    [1]

    Gerjuoy E 1961 Rev. Mod. Phys. 33 544Google Scholar

    [2]

    曾谨言 2001 量子力学导论(第二版)(北京: 北京大学出版社)第287页

    Zeng J Y 2001 Introduction to Quantum Mechanics (2nd Ed.) (Beijing: Peking University Press) p287

    [3]

    Bethe H A 1950 Rev. Mod. Phys. 22 213Google Scholar

    [4]

    Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instrum. Methods. B 169 281Google Scholar

    [5]

    Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315Google Scholar

    [6]

    Gryziński M 1965 Phys. Rev. 138 A336

    [7]

    McGuire J H, Richard P 1973 Phys. Rev. A 8 1374

    [8]

    Brandt W, Lapicki G 1979 Phys. Rev. A 20 465Google Scholar

    [9]

    Basbas G, Brandt W, Laubert R 1973 Phys. Rev. A 7 983Google Scholar

    [10]

    Basbas G, Brandt W, Laubert R 1978 Phys. Rev. A 17 1655Google Scholar

    [11]

    Gray T J, Cocke C L, Gardner R K 1977 Phys. Rev. A 16 1907Google Scholar

    [12]

    Lutz H O, Stein J, Datz S, Moak C D 1972 Phys. Rev. Lett. 28 8Google Scholar

    [13]

    Brandt W, Laubert R, Mourinot M 1973 Phys. Rev. Lett. 30 358Google Scholar

    [14]

    Timmerman R, Weeren R J V, Botteon A, Röttgering H J A, McNamara B R, Sweijen F, Bîrzan L, Morabito L K 2022 Astron. Astrophys. 668 A

    [15]

    Kimura K, Urushihara D, Kondo R, Yamamoto Y, Ang A K R, Asaka T, Happo N, Hagihara T, Matsushita T, Tajiri H, Miyazaki H, Ohara K, Iwata M, Hayashi K 2021 Phys. Rev. B 104 144101Google Scholar

    [16]

    Lalande M, Abdelmouleh M, Ryszka M, Vizcaino V, Rangama J, Méry A, Durantel F, Schlathölter T, Poully J C 2018 Phys. Rev. A 98 062701Google Scholar

    [17]

    Coskun A F, Han G J, Ganesh S, Chen S Y, Clavé X R, Harmsen S, Jiang S, Schürch C M, Bai Y H, Hitzman C, Nolan G P 2021 Nat. Commun. 12 789Google Scholar

    [18]

    Collaboration H 2017 Nature 551 478Google Scholar

    [19]

    Paul H, Sacher J 1989 Atom. Data Nucl. Data 42 105Google Scholar

    [20]

    Yu Y C, McNeir M R, Weathers D L, Duggan J L, McDaniel F D, Lapicki G 1991 Phys. Rev. A 44 5702Google Scholar

    [21]

    Bertol A P L, Hinrichs R, Vasconcellos M A Z 2015 Nucl. Instr. Meth. B 365 8Google Scholar

    [22]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [23]

    Chen X M, Shao J X, Yang Z H, Zhang H Q, Cui Y, Xu X, Xiao G Q, Zhao Y T, Zhang X A, Zhang Y P 2007 Eur. Phys. J. D 41 281Google Scholar

    [24]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [25]

    Santos-Lleo M, Schartel N, Tananbaum H, Tucker W, Weisskopf M C 2009 Nature 462 997Google Scholar

    [26]

    Wilkes B J, Tucker W, Schartel N, Santos-Lleo M 2022 Nature 606 261Google Scholar

    [27]

    Wheeler R M, Chaturvedi R P, Duggan J L, Tricomi J, Miller P D 1976 Phys. Rev. A 13 958Google Scholar

    [28]

    Bambynek W, Crasemann B, Fink R W, et al. 1972 Rev. Mod. Phys. 44 716Google Scholar

    [29]

    Peterson R C 2011 Astrophys. J. 742 21Google Scholar

    [30]

    Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan S G 2006 Astrophys. J. 643 1180Google Scholar

    [31]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C) 2009 X-Ray Data Booklet (Berkeley: Lawrence Berkeley National Laboratory University of California) pp10–12

    [32]

    Garcia J D, Fortner R J, Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [33]

    Zhang H Q, Chen X M, Yang Z H, Xu J K, Cui Y, Shao J X, Zhang X, Zhao Y T, Zhang Y P, Xiao G Q 2010 Nucl. Instr. Meth. B 268 1564Google Scholar

    [34]

    Khan M R, Crumpton D 1978 Appl. Phys. 15 335Google Scholar

    [35]

    McKnight R H, Thornton S T, Karlowicz R R 1975 Nucl. Instr. Methods. 123 1Google Scholar

    [36]

    Open Program The Stopping and Range of Ions in Matter, Ziegler J F, Ziegler M D, Biersack J P http://www.srim.org/ [2008-04

    [37]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta. Phys. Sin. 70 023201Google Scholar

    [38]

    Burch D, Ingalls W B, Risley J S, Heffner R 1972 Phys. Rev. Lett. 29 1719Google Scholar

    [39]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instr. Meth. B 195 233Google Scholar

    [40]

    周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青 2013 物理学报 62 083201Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Sun Y B, Wang X, Lei Y, Wang Y Y, Xu G, Ren J R, Zhang X A, Liang C H, Li Y Z, Mei C X, Xiao G Q 2013 Acta. Phys. Sin. 62 083201Google Scholar

    [41]

    Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X, Sun Y B 2013 Nucl. Instrum. Meth. B 299 61Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental equipment.

    图 2  127 μm Be窗厚度的HpGe探测效率曲线

    Figure 2.  Detection efficiency curve of HpGe with 127 μm Be window.

    图 3  15 MeV 类氦C离子轰击各靶产生的靶的 K-X 射线谱

    Figure 3.  Targets K-X ray spectra produced by 15 MeV helium-like C ions.

    图 4  类氦C离子诱发不同金属靶的K-X射线分支比随入射能量的变化

    Figure 4.  Variation of K-X ray branching ratio of different metal targets induced by helium-like C ions with incident energy.

    图 5  单核子能量下C4+与H分别入射各靶的X射线产生截面比较

    Figure 5.  Comparison of X ray generation cross sections of C4+ and H incident on each target at single nucleon energy.

    图 6  类氦C离子激发不同金属靶的K-X射线截面随入射能量的变化

    Figure 6.  K-X ray cross sections of helium-like C ions excited different metal targets as a function of incident energy.

  • [1]

    Gerjuoy E 1961 Rev. Mod. Phys. 33 544Google Scholar

    [2]

    曾谨言 2001 量子力学导论(第二版)(北京: 北京大学出版社)第287页

    Zeng J Y 2001 Introduction to Quantum Mechanics (2nd Ed.) (Beijing: Peking University Press) p287

    [3]

    Bethe H A 1950 Rev. Mod. Phys. 22 213Google Scholar

    [4]

    Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instrum. Methods. B 169 281Google Scholar

    [5]

    Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315Google Scholar

    [6]

    Gryziński M 1965 Phys. Rev. 138 A336

    [7]

    McGuire J H, Richard P 1973 Phys. Rev. A 8 1374

    [8]

    Brandt W, Lapicki G 1979 Phys. Rev. A 20 465Google Scholar

    [9]

    Basbas G, Brandt W, Laubert R 1973 Phys. Rev. A 7 983Google Scholar

    [10]

    Basbas G, Brandt W, Laubert R 1978 Phys. Rev. A 17 1655Google Scholar

    [11]

    Gray T J, Cocke C L, Gardner R K 1977 Phys. Rev. A 16 1907Google Scholar

    [12]

    Lutz H O, Stein J, Datz S, Moak C D 1972 Phys. Rev. Lett. 28 8Google Scholar

    [13]

    Brandt W, Laubert R, Mourinot M 1973 Phys. Rev. Lett. 30 358Google Scholar

    [14]

    Timmerman R, Weeren R J V, Botteon A, Röttgering H J A, McNamara B R, Sweijen F, Bîrzan L, Morabito L K 2022 Astron. Astrophys. 668 A

    [15]

    Kimura K, Urushihara D, Kondo R, Yamamoto Y, Ang A K R, Asaka T, Happo N, Hagihara T, Matsushita T, Tajiri H, Miyazaki H, Ohara K, Iwata M, Hayashi K 2021 Phys. Rev. B 104 144101Google Scholar

    [16]

    Lalande M, Abdelmouleh M, Ryszka M, Vizcaino V, Rangama J, Méry A, Durantel F, Schlathölter T, Poully J C 2018 Phys. Rev. A 98 062701Google Scholar

    [17]

    Coskun A F, Han G J, Ganesh S, Chen S Y, Clavé X R, Harmsen S, Jiang S, Schürch C M, Bai Y H, Hitzman C, Nolan G P 2021 Nat. Commun. 12 789Google Scholar

    [18]

    Collaboration H 2017 Nature 551 478Google Scholar

    [19]

    Paul H, Sacher J 1989 Atom. Data Nucl. Data 42 105Google Scholar

    [20]

    Yu Y C, McNeir M R, Weathers D L, Duggan J L, McDaniel F D, Lapicki G 1991 Phys. Rev. A 44 5702Google Scholar

    [21]

    Bertol A P L, Hinrichs R, Vasconcellos M A Z 2015 Nucl. Instr. Meth. B 365 8Google Scholar

    [22]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [23]

    Chen X M, Shao J X, Yang Z H, Zhang H Q, Cui Y, Xu X, Xiao G Q, Zhao Y T, Zhang X A, Zhang Y P 2007 Eur. Phys. J. D 41 281Google Scholar

    [24]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [25]

    Santos-Lleo M, Schartel N, Tananbaum H, Tucker W, Weisskopf M C 2009 Nature 462 997Google Scholar

    [26]

    Wilkes B J, Tucker W, Schartel N, Santos-Lleo M 2022 Nature 606 261Google Scholar

    [27]

    Wheeler R M, Chaturvedi R P, Duggan J L, Tricomi J, Miller P D 1976 Phys. Rev. A 13 958Google Scholar

    [28]

    Bambynek W, Crasemann B, Fink R W, et al. 1972 Rev. Mod. Phys. 44 716Google Scholar

    [29]

    Peterson R C 2011 Astrophys. J. 742 21Google Scholar

    [30]

    Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan S G 2006 Astrophys. J. 643 1180Google Scholar

    [31]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C) 2009 X-Ray Data Booklet (Berkeley: Lawrence Berkeley National Laboratory University of California) pp10–12

    [32]

    Garcia J D, Fortner R J, Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [33]

    Zhang H Q, Chen X M, Yang Z H, Xu J K, Cui Y, Shao J X, Zhang X, Zhao Y T, Zhang Y P, Xiao G Q 2010 Nucl. Instr. Meth. B 268 1564Google Scholar

    [34]

    Khan M R, Crumpton D 1978 Appl. Phys. 15 335Google Scholar

    [35]

    McKnight R H, Thornton S T, Karlowicz R R 1975 Nucl. Instr. Methods. 123 1Google Scholar

    [36]

    Open Program The Stopping and Range of Ions in Matter, Ziegler J F, Ziegler M D, Biersack J P http://www.srim.org/ [2008-04

    [37]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta. Phys. Sin. 70 023201Google Scholar

    [38]

    Burch D, Ingalls W B, Risley J S, Heffner R 1972 Phys. Rev. Lett. 29 1719Google Scholar

    [39]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instr. Meth. B 195 233Google Scholar

    [40]

    周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青 2013 物理学报 62 083201Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Sun Y B, Wang X, Lei Y, Wang Y Y, Xu G, Ren J R, Zhang X A, Liang C H, Li Y Z, Mei C X, Xiao G Q 2013 Acta. Phys. Sin. 62 083201Google Scholar

    [41]

    Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X, Sun Y B 2013 Nucl. Instrum. Meth. B 299 61Google Scholar

  • [1] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [2] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [3] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [4] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Ren Jie-Ru, Wang Xing, Lei Yu, Sun Yuan-Bo, Cheng Rei, Xu Ge, Zeng Li-Xia. K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target. Acta Physica Sinica, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [5] Liu Xue, Ran Xian-Wen, Xu Zhi-Hong, Tang Wen-Hui. Equivalence of energy deposition profile in target between electron beam of multi-energy composite spectrum and X-ray. Acta Physica Sinica, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [6] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [7] Xing Yong-Zhong, Zhao Xing-Wen, Zheng Yu-Ming. Discrepancy between the interactions of nucleons in nuclear matter due to different projection choices of invariant amplitudes. Acta Physica Sinica, 2014, 63(15): 152101. doi: 10.7498/aps.63.152101
    [8] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [9] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [10] He Man-Li, Wang Xiao, Gao Si-Feng. Cross sections for the electron impact non-dissociative ion of hydrogen and its isotopic molecule. Acta Physica Sinica, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [11] Wang Xiao-Lu, Linghu Rong-Feng, Yang Jian-hui, Lü Bing, Gao Tao, Yang Xiang-Dong. The calculation of excitation cross-sections of collisions between Ne isotope atoms with HF molecule. Acta Physica Sinica, 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [12] Lu Yan-Xia, Xie An-Ping, Li Xiao-Hua, Xiang Dong, Lu Xing-Qiang, Li Xin-Xia, Huang Qian-Hong. Cross sections of Cq+(q=14)electron loss in collision with He, Ne and Ar investigating. Acta Physica Sinica, 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [13] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [14] Liu Xin, Lei Yao-Hu, Zhao Zhi-Gang, Guo Jin-Chuan, Niu Han-Ben. Design and fabrication of hard X-ray phase grating. Acta Physica Sinica, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [15] Zhang Bo-Li, Yang Zhi-Hu, Du Shu-Bin, Chang Hong-Wei, Xue Ying-Li, Song Zhang-Yong, Zhu Ke-Xin, Tian Ye. Study of the L-subshell X-ray production cross sections of Au by 20—50 MeV O5+ bombardments. Acta Physica Sinica, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [16] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [18] FANG QUAN-YU, LI PING, LIU YONG, ZOU YU, QIU YU-BO. PHOTOIONIZATION CROSS SECTION AND BETHE COEFFCIENT OF Alq+(q=0—12). Acta Physica Sinica, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [19] WANG YING-GUAN, LUO ZHENG-MING. INFLUENCE OF NONELASTIC NUCLEAR INTERACTION ON THE PROTON BEAM ENERGY DEPOSITION. Acta Physica Sinica, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  2270
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2023
  • Accepted Date:  02 November 2023
  • Available Online:  24 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回