-
The (γ, n) cross-section is important in nuclear engineering transport calculations. The measurements of the (γ, n) reaction for some isotopes show significant discrepancies from different laboratories. Since experimental data analysis is the first tasks in nuclear data evaluation, identifying outlier data in measurements is crucial for improving the quality of nuclear data. Therefore, this work employs Variational AutoEncoder (VAE) approach to analyze experimental measurements of (γ, n) cross sections for nuclear mass from 29 to 207, aiming to provide more reliable experimental information for nuclear data evaluation.
Based on the proton Z and nuclear mass A, we constructed a Variational AutoEncoder network designed for outliers identification in measurement of (γ, n). The silhouette coeffcient method and K-Means algorithm were used to perform clustering the latent variables of VAE. Subsequently, the experimental data with and without the outliers were compared with the IAEA-2019-PD to assess VAE in application of photoneutron measurements evaluation.
The results demonstrate that VAE can effectively identify outliers in the measurements of (γ, n). After excluding outliers, the (γ, n) cross-section for 54Fe, 63Cu, 181Ta, 206Pb and 207Pb showed higher consistency with the IAEA-2019-PD evaluation results. However, 29Si and 141Pr deviated from the IAEA- 2019-PD evaluation results yet, which requires more analysis to the measurements itself in future.
The Variational AutoEncoder method effectively identifies outliers and mines the latent structures in experimental data of (γ, n) reaction. It provides more reliable experimental information for nuclear data evaluation and validating the potential application of this method in nuclear data research. However, generalization capability of Variational AutoEncoder still needs further developed especially the issues with uneven energy distribution for various measurements.-
Keywords:
- Variational Autoencoder /
- (γ,n) Reaction /
- Cross Section /
- Outlier
-
[1] Chadwick M, Oblozinsky P, Blokhin A, Fukahori T, Han Y, Lee Y, Martins M, Mughabghab S, Varlamov V, Yu B, et al. 2000 Iaea Tech-Doc 1178
[2] Obložinskỳ P 2002 J. Nucl. Sci. Technol. 3931
[3] Dietrich S S, Berman B L 1988 At. Data Nucl. Data Tables 38199
[4] Kawano T, Cho Y, Dimitriou P, Filipescu D, Iwamoto N, Plujko V, Tao X, Utsunomiya H, Varlamov V, Xu R, et al. 2020 Nucl. Data Sheets 163109
[5] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91045002
[6] He W, Li Q, Ma Y, Niu Z, Pei J, Zhang Y 2023 Sci. China Phys. Mech. Astron. 66282001
[7] He W B, Ma Y G, Pang L G, Song H C, Zhou K 2023 Nucl. Sci. Tech. 3488
[8] Bai J, Niu Z, Sun B, Niu Y 2021 Phys. Lett. B 815136147
[9] Xing K, Sun X J, Xu R R, Zou F L, Hu Z H, Wang J M, Tao X, Sun X D, Tian Y, Niu Z M 2024 Phys. Lett. B 855138825
[10] Li W, Liu L, Niu Z, Niu Y, Huang X 2024 Phys. Rev. C 109044616
[11] Bardhan J, Mandal T, Mitra S, Neeraj C, Patra M 2024 Eur. Phys. J. Spec. Top. 1
[12] Mitra S, Choi H, Liu S, Glatt R, Wendt K, Schunck N 2024 arXiv:2404.02332
[13] Fox J M, Wendt K A 2024 arXiv:2403.16389
[14] Kingma D P 2013 arXiv:1312.6114
[15] Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, et al. 2014 Nucl. Data Sheets 120272
[16] Higgins I, Matthey L, Pal A, Burgess C P, Glorot X, Botvinick M M, Mohamed S, Lerchner A 2017 ICLR (Poster) 3
[17] Parzen E 1962 Ann. Math. Stat. 331065
[18] Maas A L, Hannun A Y, Ng A Y, et al. 2013 Proc. icml 303
[19] He K, Zhang X, Ren S, Sun J 2015 Proc. IEEE Int. Conf. Comput. Vis. 1026
[20] Kingma D P 2014 arXiv:1412.6980
[21] MacQueen J, et al. 1967 Proc. Fifth Berkeley Symp. Math. Stat. Prob. 1281
[22] Rousseeuw P J 1987 J. Comput. Appl. Math. 2053
[23] Fukuda K, Okabe S 1973 J. Phys. Soc. Jpn. 34315
[24] Pywell R, Berman B, Kean P, Thompson M 1981 Nucl. Phys. A 369141
[25] McNeill K, Pywell R, Berman B, Woodworth J, Thompson M, Jury J 1987 Phys. Rev. C 361621
[26] Ratner B, Sergiyevsky A, Verbitsky S 1977 Nucl. Phys. A 28571
[27] Katz L, Cameron A 1951 Can. J. Phys. 29518
[28] Norbury J, Thompson M, Shoda K, Tsubota H 1978 Aust. J. Phys. 31471
[29] Plaisir C, Hannachi F, Gobet F, Tarisien M, Aléonard M, Méot V, Gosselin G, Morel P, Morillon B 2012 Eur. Phys. J. A 4868
[30] Sund R, Baker M, Kull L, Walton R 1968 Phys. Rev. 1761366
[31] Dzhilavyan L, Kucher N 1979 Sov. J. Nucl. Phys. 30151
[32] Berman A, Brown K 1954 Phys. Rev. 96
[33] Scott M, Hanson A, Kerst D 1955 Phys. Rev. 100209
[34] Owen D, Muirhead E, Spicer B 1968 Nucl. Phys. A 122177
[35] Byerly Jr P R, Stephens W 1951 Phys. Rev. 8354
[36] Martins M, Hayward E, Lamaze G, Maruyama X, Schima F, Wolynec E 1984 Phys. Rev. C 301855
[37] Sund R, Verbinski V 1970 Phys. Rev. C 2
[38] Utsunomiya H, Makinaga A, Goko S, Kaihori T, Akimune H, Yamagata T, Ohta M, Toyokawa H, Müller S, Lui Y W, et al. 2006 Phys. Rev. C 74025806
[39] Cook B, Hutchinson D, Waring R, Bradford J, Johnson R, Griffn J 1966 Phys. Rev. 143730
[40] Belyaev S, Semenov V 1991 Bull. Russ. Acad. Sci. Phys. 5566
[41] Belyaev S, Kozin A, Nechkin A, Semenov S S, Semenko S 1985 Yad. Fiz 421050
[42] Utsunomiya H, Akimune H, Goko S, Ohta M, Ueda H, Yamagata T, Yamasaki K, Ohgaki H, Toyokawa H, Lui Y W, et al. 2003 Phys. Rev. C 67015807
[43] Goko S, Utsunomiya H, Goriely S, Makinaga A, Kaihori T, Hohara S, Akimune H, Yamagata T, Lui Y W, Toyokawa H, et al. 2006 Phys. Rev. Lett. 96192501
[44] Kondo T, Utsunomiya H, Goriely S, Daoutidis I, Iwamoto C, Akimune H, Okamoto A, Yamagata T, Kamata M, Itoh O, et al. 2012 Phys. Rev. C 86014316
[45] Birenbaum Y, Berant Z, Kahane S, Wolf A, Moreh R 1995 Phys. Rev. C 513496
Metrics
- Abstract views: 51
- PDF Downloads: 7
- Cited By: 0