Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of n-α scattering by combining complex momentum representation and Green’s function

Wang Xiao-Wei Guo Jian-You

Citation:

Investigation of n-α scattering by combining complex momentum representation and Green’s function

Wang Xiao-Wei, Guo Jian-You
PDF
HTML
Get Citation
  • Nuclear scattering is a very important physical phenomenon in which the resonance state plays an important role. In order to study the two-body system n-α scattering, Green’s function is introduced under the complex momentum representation, so the complex momentum representation-Green’s function approach is established. This method is used to study the elastic scattering of n-α system. By extracting the resonances, it is found that the contributions of resonances in continuum level density, phase shift, and cross section are more important. In the case without introducing any non-physical parameters, it is very helpful to understand the resonant states and the non-resonance continuum states by analyzing the data of scattering states. In this work, we mainly study the p-wave scattering with the orbital angular momentum l = 1, where P1/2 is a wide resonance state and P3/2 is narrow resonance state. The study shows that the sharp resonance peak of p-wave scattering gives rather broad distribution to the scattering phase shift and the cross section of the n-α system. By comparison, we can see that the theoretical calculation results and experimental data are in good consistence.
      Corresponding author: Guo Jian-You, jianyou@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575002).
    [1]

    Tanihata I 1996 J. Phys. G 22 157Google Scholar

    [2]

    Ryusuke S, Takayuki M, Kiyoshi K 2005 Prog. Theor. Phys. 113 1273Google Scholar

    [3]

    Kiyoshi K, Masayuki A 2014 Phys. Rev. C 89 034322Google Scholar

    [4]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [5]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Lett. 59 763Google Scholar

    [6]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [7]

    Taylor J R, Wiley J 1972 Scattering Theory: The Quantum Theory on Non-relativistic Collisions (New York: Inc. Mineola) pp204−207

    [8]

    Amos K, Canton L, Pisent G, Svenne J P, van der Knijff D 2003 Nucl. Phys. A 728 65Google Scholar

    [9]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [10]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [11]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [12]

    Shi M, Liu Q, Niu Z M, Gou J Y 2014 Phys. Rev. C 90 034319Google Scholar

    [13]

    Zhu Z L, Niu Z M, Li D P, Liu Q, Guo J Y 2014 Phys. Rev. C 89 034307Google Scholar

    [14]

    Liu Q, Guo J Y, Niu Z M, Chen S W 2012 Phys. Rev. C 86 054312Google Scholar

    [15]

    Wang H Y, Chang X U 2016 Nucl. Phys. Rev. 33 1

    [16]

    Jolly R K, Amos T M, Galonsky A 1973 Phys. Rev. C 7 1903Google Scholar

    [17]

    Brussel M K, Williams J H 1957 Phys. Rev. C 106 286Google Scholar

    [18]

    Hwang C F 1962 Phys. Rev. Lett. 9 104Google Scholar

    [19]

    May T H, Walter R L, Barschall H H 1963 Nucl. Phys. 45 17Google Scholar

    [20]

    Craddock M K 1963 Phys. Lett. 5 335Google Scholar

    [21]

    Barnard A C L, Jones C M, Weil J L 1964 Nucl. Phys. 50 604Google Scholar

    [22]

    Bunch S M, Forster H H, Kim C C 1964 Nucl. Phys. 53 241Google Scholar

    [23]

    Morgan G L 1968 Phys. Rev. 168 114Google Scholar

    [24]

    Garreta D, Sura J, Tarrats A 1969 Nucl. Phys. A 132 204Google Scholar

    [25]

    Goldstein N P, Held A, Stairs D G 1970 Can. J. Phys. 48 2629Google Scholar

    [26]

    Schwandt P, Clegg T B, Haeberli W 1971 Nucl. Phys. A 163 432Google Scholar

    [27]

    Bacher A D 1972 Phys. Rev. C 5 1147Google Scholar

    [28]

    Austin S M, Barschall H H, Shamu R E 1962 Phys. Rev. 126 1532Google Scholar

    [29]

    Shi X X, Shi M, Heng T H 2016 Phys. Rev. C 94 024302Google Scholar

    [30]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [31]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311Google Scholar

    [32]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [33]

    Shi M, Niu Z M, Liang H Z 2018 Phys. Rev. C 97 064301Google Scholar

    [34]

    Ali S, Bodmer A R 1966 Nucl. Phys. 80 99Google Scholar

    [35]

    Marquez L 1983 Phys. Rev. C 28 2525Google Scholar

    [36]

    Mohr P 1994 Z. Phys. A 349 339Google Scholar

    [37]

    Shlomo S 1992 Nucl. Phys. A 539 17Google Scholar

    [38]

    Levine R D 1969 Quantum Mechanics of Molecular Rate Processes (Oxford: Clarendon Press Oxford) pp101−106

    [39]

    Haberzettl H, Workman R 2007 Phys. Rev. C 76 058201Google Scholar

    [40]

    Hamamoto I 2010 Phys. Rev. C 81 021304(R)Google Scholar

    [41]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [42]

    Meng J, Ring P 1996 Rev. Lett. 77 3963Google Scholar

    [43]

    Sandulesu N, Van Giai N, Liotta R J 2000 Phys. Rev. C 61 061301Google Scholar

    [44]

    Kanada H, Kaneko T, Nagata S, Nomoto M 1979 Prog. Theor. Phys. 61 1327Google Scholar

    [45]

    Kruppa A T 1998 Phys. Lett. B 431 237Google Scholar

    [46]

    Kruppa A T, Arai K 1999 Phys. Rev. A 59 3556Google Scholar

    [47]

    Myo T, Kikuchi Y, Masui H, Kato K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [48]

    Shi M, Guo J Y, Liu Q, Niu Z M, Heng T H 2015 Phys. Rev. C 92 054313Google Scholar

    [49]

    Shi M, Shi X X, Niu Z M, Sun T T, Guo J M 2017 Eur. Phys. J. A 53 40Google Scholar

    [50]

    Tilley D R, Cheves C M, Godwin J L, et al. 2002 Nucl. Phys. A 708 3Google Scholar

    [51]

    Hoop B, Barschall H H 1966 Nucl. Phys. 83 65Google Scholar

    [52]

    Stammbach T, Walter R L 1972 Nucl. Phys. A 180 225Google Scholar

    [53]

    Vaughn F J, Imhof W L, Johnson R G, Walt M 1960 Phys. Rev. 118 683Google Scholar

    [54]

    Los Alamos P, Gryogenics G 1959 Nucl. Phys. 12 291Google Scholar

  • 图 1  用CMR-GF方法在4种不同积分路径下计算得到的n-α系统的$\rm P_{{1/2}}$轨道的单粒子共振态, 图中红色五角星代表共振态, 点心圆圈代表非共振连续谱, 绿色实线代表动量平面内的积分路径

    Figure 1.  Single particle resonance states for $\rm P_{1/2}$ orbital of n-α systems calculated by using CMR-GF method under four different integral paths. The red pentagram represents the resonant state, the circle represents the continuum, and the green solid line represents the integral path in the momentum plane.

    图 2  图1所示, 计算得到的n-α系统的$\rm P_{3/2}$轨道的单粒子共振态, 图中红色圆球代表共振态, 点心圆圈代表非共振连续谱, 绿色实线代表是动量平面内的积分路径

    Figure 2.  Single particle resonance states for $\rm P_{3/2}$ orbital of n-α systems. The red sphere represents the resonant state, the circle represents the continuum, and the green solid line represents the integral path in the momentum plane.

    图 3  在四种不同积分路径下, 用CMR-GF方法计算得到的$\rm P_{3/2}$态CLD

    Figure 3.  CLD of the $\rm P_{3/2}$ state under four different integral paths calculated by CMR-GF method.

    图 4  在四种不同积分路径下, 用CMR-GF方法计算得到的$\rm P_{1/2}$态CLD

    Figure 4.  CLD of the $\rm P_{1/2}$ state under four different integral paths calculated by CMR-GF method.

    图 5  n-α散射系统的${\rm{P}}_{1/2}$态的相移(橘色长虚线表示共振态散射相移, 红色短虚线表示连续谱散射相移, 黑色实线表示总散射相移, 紫色圆圈表示由R矩阵理论计算所得散射相移, 绿色五角星表示实验上的相移)

    Figure 5.  The ${\rm{P}}_{1/2}$ phase shift of n-α scattering system. The orange long dotted line represents the resonant scattering phase shift, the red short dotted line represents the continuum scattering phase shift, the black solid line represents the total scattering phase shift, the purple circle represents the scattering phase shift calculated by R matrix theory, and the green stars represent the experimental data of the total scattering phase shift.

    图 6  n-α散射系统的${\rm{P}}_{3/2}$态的相移(橘色长虚线表示共振态散射相移, 红色短虚线表示连续谱散射相移, 黑色实线表示总散射相移, 紫色圆圈表示由R矩阵理论计算所得散射相移, 绿色五角星表示实验上的相移)

    Figure 6.  The ${\rm{P}}_{3/2}$ phase shift of n-α scattering system. The orange long dotted line represents the resonant scattering phase shift, the red short dotted line represents the continuum scattering phase shift, the black solid line represents the total scattering phase shift, the purple circle represents the scattering phase shift calculated by R matrix theory, and the green stars represent the experimental data of the total scattering phase shift.

    图 8  ${\rm{P}}_{3/2}$波散射的共振态截面、连续谱截面和总散射截面

    Figure 8.  Resonant cross section, continuum cross section, and total scattering cross section of ${\rm{P}}_{3/2}$-wave scattering.

    图 7  ${\rm{P}}_{1/2}$波散射的共振态截面、连续谱截面和总散射截面

    Figure 7.  Resonant cross section, continuum cross section, and total scattering cross section of ${\rm{P}}_{1/2}$-wave scattering.

    图 9  系统的总散射截面(实点表示计算结果, 圆圈表示实验数据)

    Figure 9.  Total scattering cross section of the n-α system. The solid points represent the calculated results, and the circles represent the experimental data.

    表 1  n-α散射KKNN势参数

    Table 1.  Parameters of the n-α KKNN potential

    $V^{\rm {\rm {c}}}$/MeV $ {\mu}^{\rm {c}} /{{\rm{f}}{{\rm{m}}^{ - 2}}}$ $ V_{l}^{\rm {c}}\!$/MeV $ {\mu}_{ {l}}^{\rm {c}} /{{\rm{f}}{{\rm{m}}^{ - 2}}} $
    $ -96.3 $ $ 0.36 $ $ 34.0 $ $ 0.20 $
    Central $ 77.0 $ $ 0.90 $ $ -85.0 $ $ 0.53 $
    $ 51.0 $ $ 2.50 $
    $V^{\rm{ls}}$/MeV ${\mu}^{ \rm{ls}} /{{\rm{f}}{{\rm{m}}^{ - 2}}}$ $V_{ {l}}^{ \rm{ls}}$/MeV ${\mu}_{ {l}}^{\rm{ls}} /{{\rm{f}}{{\rm{m}}^{ - 2}}}$
    Spin-orbit $ -16.8 $ $ 0.52 $ $ -20.0 $ $ 0.396 $
    $ 20.0 $ $ 2.200 $
    DownLoad: CSV
  • [1]

    Tanihata I 1996 J. Phys. G 22 157Google Scholar

    [2]

    Ryusuke S, Takayuki M, Kiyoshi K 2005 Prog. Theor. Phys. 113 1273Google Scholar

    [3]

    Kiyoshi K, Masayuki A 2014 Phys. Rev. C 89 034322Google Scholar

    [4]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29Google Scholar

    [5]

    Hale G M, Brown R E, Jarmie N 1987 Phys. Lett. 59 763Google Scholar

    [6]

    Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 44 2530Google Scholar

    [7]

    Taylor J R, Wiley J 1972 Scattering Theory: The Quantum Theory on Non-relativistic Collisions (New York: Inc. Mineola) pp204−207

    [8]

    Amos K, Canton L, Pisent G, Svenne J P, van der Knijff D 2003 Nucl. Phys. A 728 65Google Scholar

    [9]

    Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys. Rev. C 82 034318Google Scholar

    [10]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501Google Scholar

    [11]

    Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323Google Scholar

    [12]

    Shi M, Liu Q, Niu Z M, Gou J Y 2014 Phys. Rev. C 90 034319Google Scholar

    [13]

    Zhu Z L, Niu Z M, Li D P, Liu Q, Guo J Y 2014 Phys. Rev. C 89 034307Google Scholar

    [14]

    Liu Q, Guo J Y, Niu Z M, Chen S W 2012 Phys. Rev. C 86 054312Google Scholar

    [15]

    Wang H Y, Chang X U 2016 Nucl. Phys. Rev. 33 1

    [16]

    Jolly R K, Amos T M, Galonsky A 1973 Phys. Rev. C 7 1903Google Scholar

    [17]

    Brussel M K, Williams J H 1957 Phys. Rev. C 106 286Google Scholar

    [18]

    Hwang C F 1962 Phys. Rev. Lett. 9 104Google Scholar

    [19]

    May T H, Walter R L, Barschall H H 1963 Nucl. Phys. 45 17Google Scholar

    [20]

    Craddock M K 1963 Phys. Lett. 5 335Google Scholar

    [21]

    Barnard A C L, Jones C M, Weil J L 1964 Nucl. Phys. 50 604Google Scholar

    [22]

    Bunch S M, Forster H H, Kim C C 1964 Nucl. Phys. 53 241Google Scholar

    [23]

    Morgan G L 1968 Phys. Rev. 168 114Google Scholar

    [24]

    Garreta D, Sura J, Tarrats A 1969 Nucl. Phys. A 132 204Google Scholar

    [25]

    Goldstein N P, Held A, Stairs D G 1970 Can. J. Phys. 48 2629Google Scholar

    [26]

    Schwandt P, Clegg T B, Haeberli W 1971 Nucl. Phys. A 163 432Google Scholar

    [27]

    Bacher A D 1972 Phys. Rev. C 5 1147Google Scholar

    [28]

    Austin S M, Barschall H H, Shamu R E 1962 Phys. Rev. 126 1532Google Scholar

    [29]

    Shi X X, Shi M, Heng T H 2016 Phys. Rev. C 94 024302Google Scholar

    [30]

    Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev. Lett. 117 062502Google Scholar

    [31]

    Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S 2017 Phys. Rev. C 95 024311Google Scholar

    [32]

    Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys. Rev. C 98 014316Google Scholar

    [33]

    Shi M, Niu Z M, Liang H Z 2018 Phys. Rev. C 97 064301Google Scholar

    [34]

    Ali S, Bodmer A R 1966 Nucl. Phys. 80 99Google Scholar

    [35]

    Marquez L 1983 Phys. Rev. C 28 2525Google Scholar

    [36]

    Mohr P 1994 Z. Phys. A 349 339Google Scholar

    [37]

    Shlomo S 1992 Nucl. Phys. A 539 17Google Scholar

    [38]

    Levine R D 1969 Quantum Mechanics of Molecular Rate Processes (Oxford: Clarendon Press Oxford) pp101−106

    [39]

    Haberzettl H, Workman R 2007 Phys. Rev. C 76 058201Google Scholar

    [40]

    Hamamoto I 2010 Phys. Rev. C 81 021304(R)Google Scholar

    [41]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [42]

    Meng J, Ring P 1996 Rev. Lett. 77 3963Google Scholar

    [43]

    Sandulesu N, Van Giai N, Liotta R J 2000 Phys. Rev. C 61 061301Google Scholar

    [44]

    Kanada H, Kaneko T, Nagata S, Nomoto M 1979 Prog. Theor. Phys. 61 1327Google Scholar

    [45]

    Kruppa A T 1998 Phys. Lett. B 431 237Google Scholar

    [46]

    Kruppa A T, Arai K 1999 Phys. Rev. A 59 3556Google Scholar

    [47]

    Myo T, Kikuchi Y, Masui H, Kato K 2014 Prog. Part. Nucl. Phys. 79 1Google Scholar

    [48]

    Shi M, Guo J Y, Liu Q, Niu Z M, Heng T H 2015 Phys. Rev. C 92 054313Google Scholar

    [49]

    Shi M, Shi X X, Niu Z M, Sun T T, Guo J M 2017 Eur. Phys. J. A 53 40Google Scholar

    [50]

    Tilley D R, Cheves C M, Godwin J L, et al. 2002 Nucl. Phys. A 708 3Google Scholar

    [51]

    Hoop B, Barschall H H 1966 Nucl. Phys. 83 65Google Scholar

    [52]

    Stammbach T, Walter R L 1972 Nucl. Phys. A 180 225Google Scholar

    [53]

    Vaughn F J, Imhof W L, Johnson R G, Walt M 1960 Phys. Rev. 118 683Google Scholar

    [54]

    Los Alamos P, Gryogenics G 1959 Nucl. Phys. 12 291Google Scholar

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [4] Gao Fei, Li Teng, Tong Heng-Qing, Ou Zhuo-Ling. Chaotic dynamics of the fractional Willis aneurysm system and its control. Acta Physica Sinica, 2016, 65(23): 230502. doi: 10.7498/aps.65.230502
    [5] Xing Yong-Zhong, Zhao Xing-Wen, Zheng Yu-Ming. Discrepancy between the interactions of nucleons in nuclear matter due to different projection choices of invariant amplitudes. Acta Physica Sinica, 2014, 63(15): 152101. doi: 10.7498/aps.63.152101
    [6] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [7] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [8] Liu Ye, Chen Shou-Wan, Guo Jian-You. Research on the single-particle resonant states by the complex scaling method. Acta Physica Sinica, 2012, 61(11): 112101. doi: 10.7498/aps.61.112101
    [9] He Man-Li, Wang Xiao, Gao Si-Feng. Cross sections for the electron impact non-dissociative ion of hydrogen and its isotopic molecule. Acta Physica Sinica, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [10] Wang Xiao-Lu, Linghu Rong-Feng, Yang Jian-hui, Lü Bing, Gao Tao, Yang Xiang-Dong. The calculation of excitation cross-sections of collisions between Ne isotope atoms with HF molecule. Acta Physica Sinica, 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [11] Lu Yan-Xia, Xie An-Ping, Li Xiao-Hua, Xiang Dong, Lu Xing-Qiang, Li Xin-Xia, Huang Qian-Hong. Cross sections of Cq+(q=14)electron loss in collision with He, Ne and Ar investigating. Acta Physica Sinica, 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [12] Zhang Li, Zhou Shan-Gui, Meng Jie, Zhao En-Guang. Real stabilization method for single particle resonances. Acta Physica Sinica, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [13] Zhang Deng-Hong, Dong Chen-Zhong, Xie Lu-You, Ding Xiao-Bin, Fu Yan-Biao. Relativistic theoretical study on the KLL dielectronic recombination of helium-like ions. Acta Physica Sinica, 2006, 55(1): 112-118. doi: 10.7498/aps.55.112
    [14] FANG QUAN-YU, LI PING, LIU YONG, ZOU YU, QIU YU-BO. PHOTOIONIZATION CROSS SECTION AND BETHE COEFFCIENT OF Alq+(q=0—12). Acta Physica Sinica, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [15] WANG YING-GUAN, LUO ZHENG-MING. INFLUENCE OF NONELASTIC NUCLEAR INTERACTION ON THE PROTON BEAM ENERGY DEPOSITION. Acta Physica Sinica, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [16] . Acta Physica Sinica, 1966, 22(8): 961-966. doi: 10.7498/aps.22.961
    [17] . Acta Physica Sinica, 1966, 22(6): 724-728. doi: 10.7498/aps.22.724
    [18] LIU LIAN-SOU. COMPLEX ANGULAR MOMENTUM IN π-N SCATTERING. Acta Physica Sinica, 1965, 21(6): 1123-1131. doi: 10.7498/aps.21.1123
    [19] KE MO-LIN, TUAN I-SHIH. ON THE π-π RESONANCE STATES. Acta Physica Sinica, 1965, 21(11): 1903-1912. doi: 10.7498/aps.21.1903
    [20] HSU PEI-WEI, KUNG FAN-MEI, KUNG HSUCH-HUI. K-K RESONANCE. Acta Physica Sinica, 1964, 20(11): 1129-1134. doi: 10.7498/aps.20.1129
Metrics
  • Abstract views:  6063
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  13 December 2018
  • Accepted Date:  25 February 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回