Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure

Yang Chen Zuo Guan-Hua Tian Zhuang-Zhuang Zhang Yu-Chi Zhang Tian-Cai

Citation:

Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure

Yang Chen, Zuo Guan-Hua, Tian Zhuang-Zhuang, Zhang Yu-Chi, Zhang Tian-Cai
PDF
HTML
Get Citation
  • Magnetometry has already been widely used in mineral exploration, medical exploration and precision measurement physics. One is trying to improve the sensitivity of the magnetometer. One of the most widely used magnetometers is based on the Bell-Bloom structure, which can be realized by modulating the pump light. The sensitivity of the Bell-Bloom magnetometer is determined by the magnetic resonance linewidth (MRL) and the signal-to-noise under the condition of magnetic resonance (SNR). Both are affected by the pump intensity and the relaxation rate of the atoms. In order to achieve a higher sensitivity, how these factors affect the magnetic field measurement should be analyzed. In this paper, the influence of the pump light on the sensitivity of the linearly polarized Bell-Bloom magnetometer is investigated based on the Bloch equation with amplitude modulated pump beam and the rate equations with spin relaxation. The rate equations are obtained from the Liouville equation, and the theoretical analysis is based on the cesium. The pump beam is linearly polarized and is resonant to D1 transition of cesium. Both the direct pump (pump frequency is resonant to ${6^2}{{\rm{S}}_{1/2}}\;F = 4$${6^2}{{\rm{P}}_{1/2}}\;F' = 3$ transition) and the indirect pump (pump frequency is resonant to ${6^2}{{\rm{S}}_{1/2}}\;F = 3 $${6^2}{{\rm{P}}_{1/2}}\;F' = 4$ transition) are analyzed. The experiment is performed based on a 20-mm cube cesium vapour cell with 20-Torr helium as buffer gas. The linearly polarized probe beam is tuned to resonance to cesium D2 transition ${6^2}{{\rm{S}}_{1/2}}\;F = 4$$ {6^2}{{\rm{P}}_{3/2}}\;F' = 5$, and the intensity of the probe is 0.2 W/m2. The spectra of magnetic resonance are measured by using the lock-in detection with a scanning of the modulation frequency. Then the sensitivity can be obtained by measuring MRL and SNR. The experimental results show that the sensitivity and the pump intensity are related nonlinearly, which is coincident with theoretical result. Higher sensitivity can be obtained under the condition of indirect pump. In addition, the effect of atomic spin relaxation on sensitivity is also analyzed with the indirect pump beam. This work clarifies the dynamics of the Bell-Bloom magnetometer to some extent. The highest sensitivity obtained is $31.7\;{\rm{pT}}/\sqrt {{\rm{Hz}}} $ in our experiment, which can be optimized by using other kinds of vapour cells and different measuring methods.
      Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grants Nos. 11634008, 11674203, 11574187, 61227902).
    [1]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227Google Scholar

    [2]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801Google Scholar

    [3]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [4]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 623Google Scholar

    [5]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280Google Scholar

    [6]

    Wang M L, Wang M B, Zhang G Y, Zhao K F 2016 Chin. Phys. B 25 060701Google Scholar

    [7]

    Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J, Prouty M 2012 J. Opt. Soc. Am. B 29 3398Google Scholar

    [8]

    Grujić Z D, Weis A 2013 Phys. Rev. A 88 012508Google Scholar

    [9]

    Mateos I, Patton B, Zhivun E, Budker D, Wurm D, Ramos-Castro J 2015 Sensors and Actuators A: Physical 224 147Google Scholar

    [10]

    Liu G, Li X, Sun X, Feng J, Ye C, Zhou X 2013 J. Magn. Reson. 237 158Google Scholar

    [11]

    Pustelny S, Wojciechowski A, Gring M, Kotyrba M, Zachorowski J, Gawlik W 2008 J. Appl. Phys. 103 063108Google Scholar

    [12]

    Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501Google Scholar

    [13]

    董海峰, 郝慧杰, 黄海超, 胡旭阳, 周斌权 2014 仪器仪表学报 35 2783

    Dong H F, Hao H J, Huang H C, Hu X Y, Zhou B Q 2014 Chin. J. Sci. Instrum. 35 2783

    [14]

    Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503Google Scholar

    [15]

    Wang M B, Zhao D F, Zhang G Y, Zhao K F 2017 Chin. Phys. B 26 100701Google Scholar

    [16]

    Lucivero V G, Anielski P, Gawlik W, Mitchell M W 2014 Rev. Sci. Instrum. 85 113108Google Scholar

    [17]

    Li W H, Peng X, Li S J, Liu C F, Guo H 2016 IEEE International Frequency Control Symposium (IFCS) New Orleans, USA, May 9−12, 2016 p1

    [18]

    Julsgaard B, Sherson J, Sørensen J L, Polzik E S 2004 J. Opt. B 6 5Google Scholar

    [19]

    Avila G, Giordano V, Candelier V, de Clercq E, Theobald G, Cerez P 1987 Phys. Rev. A 36 3719Google Scholar

    [20]

    张军海, 向康, 梅红松, 赵文辉, 黄宗军, 孙伟民 2015 光电子•激光 26 211

    Zhang J H, Xiang K, Mei H S, Zhao W H, Huang Z J, Sun W M 2015 J. Optoelectron. Laser 26 211

    [21]

    Ledbetter M P, Savukov I M, Acosta V M, Budker D, Romalis M V 2008 Phys. Rev. A 77 033408Google Scholar

    [22]

    Yang G Q, Zhang H B, Geng X X, Liang S Q, Zhu Y F, Mao J T, Huang G M, Li G X 2018 Opt. Express 26 30313Google Scholar

    [23]

    Rochester S M 2010 Ph. D. Dissertation (Berkeley: University of California

    [24]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [25]

    Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E, Hughes I G 2006 Phys. Rev. A 73 062509Google Scholar

    [26]

    薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀 2016 物理学报 65 044211Google Scholar

    Xue J, Qin J L, Zhang Y C, Li G, Zhang P F, Zhang T C, Peng K C 2016 Acta Phys. Sin. 65 044211Google Scholar

    [27]

    Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H, Weis A 2009 Appl. Phys. B 96 763

    [28]

    Li W H, Balabas M, Peng X, Pustelny S, Wickenbrock A, Guo H, Budker D 2017 J. Appl. Phys. 121 063104Google Scholar

    [29]

    Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V, Yashchuk V V 2005 Phys. Rev. A 72 023401Google Scholar

    [30]

    Cates G D, Schaefer S R, Happer W 1988 Phys. Rev. A 37 2877Google Scholar

    [31]

    Hasson K C, Cates G D, Lerman K, Bogorad P, Happer W 1990 Phys. Rev. A 41 3672Google Scholar

    [32]

    Seltzer S J, Romalis M V 2009 J. Appl. Phys. 106 114905Google Scholar

    [33]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [34]

    黄江 2016 量子光学学报 22 121

    Huang J 2016 J. Quantum Opt. 22 121

    [35]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E, Sushkov A O, Yashchuk V V 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [36]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 093602Google Scholar

  • 图 1  线极化的Bell-Bloom测磁系统基本原理图

    Figure 1.  Bell-Bloom configuration with linearly polarized pump beam.

    图 2  抽运光与铯原子相互作用 (a)光与铯原子相互作用; (b)线偏振的抽运光与铯原子相互作用

    Figure 2.  Interaction between pump light and cesium atoms: (a) Light-atom interaction; (b) interaction between linearly polarized pump light and cesium atoms.

    图 3  铯原子基态${6^2}{{\rm{S}}_{1/2}}\;F = 4$${6^2}{{\rm{S}}_{1/2}}\;F = 3$各个磁子能级的布居数随时间的演化 (a) ${I_0} = 0.5\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$时, 直接抽运的情况; (b) ${I_0} = 10\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$时, 间接抽运的情况

    Figure 3.  Evolution of the populations in each Zeeman sublevels with time of cesium atoms’s ground state ${6^2}{{\rm{S}}_{1/2}}\;F = 4$ and ${6^2}{{\rm{S}}_{1/2}}\;F = 3$: (a) Results of direct pump with the pump intensity ${I_0} = 0.5\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$; (b) results of indirect pump with the pump intensity ${I_0} = 10\;{\rm{ W/}}{{\rm{m}}^{\rm{2}}}$

    图 4  磁共振时, 信号幅度$P_y^{\max }$与约化磁场灵敏度${\text{δ}}{B_0}$随抽运光光强${I_0}$的变化 (a)直接抽运, $ \alpha =2{\text{π}} \times 103\; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $; (b)间接抽运, $ \alpha =2{\text{π}} \times 1 \; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $

    Figure 4.  Signal amplitude $P_y^{\max }$ and relative sensitivity ${\text{δ}}{B_0}$ change along with the pump intensity ${I_0}$ under the condition of magnetic resonance: (a) Direct pump with $ \alpha =2{\text{π}} \times 103 \; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $; (b) indirect pump with $ \alpha = 2{\text{π}} \times1 \; {\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $

    图 5  实验装置图(SAS, 饱和吸收谱; VNDF, 连续可变衰减片; HWP, 半波片; PBS, 偏振分束器; HR, 高反镜; GTP, 格兰泰勒棱镜; WP, 渥拉斯顿棱镜; EO-AM, 电光振幅调制器; BPD, 平衡探测器; LIA, 锁相放大器; AC, 交流电源; DC, 直流电源; HC, 亥姆霍兹线圈; OSC, 示波器; SA, 频谱分析仪; P, 光的偏振方向)

    Figure 5.  Experimental setup. SAS, saturated absorption spectrum; VNDF, variable neutral density filter; HWP, half wave plate; PBS, polarization beam splitter; HR, high reflectivity mirror; GTP, Glan-Tylor prism; WP, Wollaston prism; EO-AM, electro-optical amplitude modulator; BPD, balanced photodetector; LIA, lock-in amplifier; AC, alternating current power supply; DC, direct current power supply; HC, Helmholtz coils; OSC, oscilloscope; SA, spectrum analyzer; P, direction of light polarization

    图 6  直接抽运与间接抽运的磁共振谱线

    Figure 6.  Spectra of magnetic resonance with direct pump and indirect pump.

    图 7  磁共振线宽$\Delta \omega $随抽运光光强${I_0}$的变化 (a)直接抽运, $ \alpha =2{\text{π}} \times (103.2 \pm 14.3)\;{\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $; (b)间接抽运, $ \alpha =2{\text{π}} \;\times $ $ (0.6907 \;\pm 0.1318)\;{\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}{\rm{/W}} $

    Figure 7.  Variation of magnetic resonance linewidth $\Delta \omega $ with pump intensity ${I_0}$: (a) Direct pump, $ \alpha = 2{\text{π}}\times (103.2 \pm 14.3)\;{\rm{ Hz}} \;\times$ $ {{\rm{m}}^{\rm{2}}}{\rm{W}} $; (b) indirect pump, $ \alpha = 2{\text{π}} \times (0.6907 \pm 0.1318)\;{\rm{ Hz}} \times {{\rm{m}}^{\rm{2}}}$/W

    图 8  磁共振时, 信噪比SNR与磁场灵敏度${\text{δ}}B$随抽运光光强${I_0}$的变化 (a)直接抽运; (b)间接抽运

    Figure 8.  Variation of SNR and sensitivity ${\text{δ}}B$ with the pump intensity ${I_0}$ under the condition of magnetic resonance: (a) Direct pump; (b) indirect pump

    图 9  在自旋弛豫率${r_0}$不同时, 间接抽运的约化磁场灵敏度${\text{δ}}{B_0}$随抽运光光强${I_0}$的变化

    Figure 9.  sensitivity ${\text{δ}}{B_0}$ and pump intensity ${I_0}$ with indirect pump under the condition of different relaxation rate ${r_0}$.

  • [1]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227Google Scholar

    [2]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801Google Scholar

    [3]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [4]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 623Google Scholar

    [5]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280Google Scholar

    [6]

    Wang M L, Wang M B, Zhang G Y, Zhao K F 2016 Chin. Phys. B 25 060701Google Scholar

    [7]

    Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J, Prouty M 2012 J. Opt. Soc. Am. B 29 3398Google Scholar

    [8]

    Grujić Z D, Weis A 2013 Phys. Rev. A 88 012508Google Scholar

    [9]

    Mateos I, Patton B, Zhivun E, Budker D, Wurm D, Ramos-Castro J 2015 Sensors and Actuators A: Physical 224 147Google Scholar

    [10]

    Liu G, Li X, Sun X, Feng J, Ye C, Zhou X 2013 J. Magn. Reson. 237 158Google Scholar

    [11]

    Pustelny S, Wojciechowski A, Gring M, Kotyrba M, Zachorowski J, Gawlik W 2008 J. Appl. Phys. 103 063108Google Scholar

    [12]

    Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501Google Scholar

    [13]

    董海峰, 郝慧杰, 黄海超, 胡旭阳, 周斌权 2014 仪器仪表学报 35 2783

    Dong H F, Hao H J, Huang H C, Hu X Y, Zhou B Q 2014 Chin. J. Sci. Instrum. 35 2783

    [14]

    Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503Google Scholar

    [15]

    Wang M B, Zhao D F, Zhang G Y, Zhao K F 2017 Chin. Phys. B 26 100701Google Scholar

    [16]

    Lucivero V G, Anielski P, Gawlik W, Mitchell M W 2014 Rev. Sci. Instrum. 85 113108Google Scholar

    [17]

    Li W H, Peng X, Li S J, Liu C F, Guo H 2016 IEEE International Frequency Control Symposium (IFCS) New Orleans, USA, May 9−12, 2016 p1

    [18]

    Julsgaard B, Sherson J, Sørensen J L, Polzik E S 2004 J. Opt. B 6 5Google Scholar

    [19]

    Avila G, Giordano V, Candelier V, de Clercq E, Theobald G, Cerez P 1987 Phys. Rev. A 36 3719Google Scholar

    [20]

    张军海, 向康, 梅红松, 赵文辉, 黄宗军, 孙伟民 2015 光电子•激光 26 211

    Zhang J H, Xiang K, Mei H S, Zhao W H, Huang Z J, Sun W M 2015 J. Optoelectron. Laser 26 211

    [21]

    Ledbetter M P, Savukov I M, Acosta V M, Budker D, Romalis M V 2008 Phys. Rev. A 77 033408Google Scholar

    [22]

    Yang G Q, Zhang H B, Geng X X, Liang S Q, Zhu Y F, Mao J T, Huang G M, Li G X 2018 Opt. Express 26 30313Google Scholar

    [23]

    Rochester S M 2010 Ph. D. Dissertation (Berkeley: University of California

    [24]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [25]

    Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E, Hughes I G 2006 Phys. Rev. A 73 062509Google Scholar

    [26]

    薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀 2016 物理学报 65 044211Google Scholar

    Xue J, Qin J L, Zhang Y C, Li G, Zhang P F, Zhang T C, Peng K C 2016 Acta Phys. Sin. 65 044211Google Scholar

    [27]

    Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H, Weis A 2009 Appl. Phys. B 96 763

    [28]

    Li W H, Balabas M, Peng X, Pustelny S, Wickenbrock A, Guo H, Budker D 2017 J. Appl. Phys. 121 063104Google Scholar

    [29]

    Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V, Yashchuk V V 2005 Phys. Rev. A 72 023401Google Scholar

    [30]

    Cates G D, Schaefer S R, Happer W 1988 Phys. Rev. A 37 2877Google Scholar

    [31]

    Hasson K C, Cates G D, Lerman K, Bogorad P, Happer W 1990 Phys. Rev. A 41 3672Google Scholar

    [32]

    Seltzer S J, Romalis M V 2009 J. Appl. Phys. 106 114905Google Scholar

    [33]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [34]

    黄江 2016 量子光学学报 22 121

    Huang J 2016 J. Quantum Opt. 22 121

    [35]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E, Sushkov A O, Yashchuk V V 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [36]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 093602Google Scholar

  • [1] Yang Yu-Lin, Bai Le-Le, Zhang Lu-Lu, He Jun, Wen Xin, Wang Jun-Min. Experimental investigation of spin noise spectroscopy of rubidium atomic ensemble. Acta Physica Sinica, 2020, 69(23): 233201. doi: 10.7498/aps.69.20201103
    [2] Li Hui, Jiang Min, Zhu Zhen-Nan, Xu Wen-Jie, Xu Min-Xiang, Peng Xin-Hua. Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer. Acta Physica Sinica, 2019, 68(16): 160701. doi: 10.7498/aps.68.20190868
    [3] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [4] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [5] Zhang Ke-Han, Yan Long-Bin, Yan Zheng-Chao, Wen Hai-Bing, Song Bao-Wei. Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance. Acta Physica Sinica, 2016, 65(4): 048401. doi: 10.7498/aps.65.048401
    [6] Feng Gao-Ping, Sun Yu, Zheng Xin, Hu Shui-Ming. Design and measurement of a magnetic field for precision spectroscopy of helium. Acta Physica Sinica, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [7] Wen Feng, Wu Bao-Jian, Li Zhi, Li Shu-Biao. Temperature-insensitive magnetic-field measurement using all-fiber Sagnac interferometers. Acta Physica Sinica, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [8] Wu Yong-Sheng, Wang Bing. Preparation and physical properties of (BEDT-TTF)[FeBr4] crystal. Acta Physica Sinica, 2012, 61(5): 056104. doi: 10.7498/aps.61.056104
    [9] Zhang Lei, Li Hui-Wu, Hu Liang-Bin. Study of stability of persistent spin helix in two-dimensional electron gases with spin-orbit coupling. Acta Physica Sinica, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [10] Wang Qi-Wen, Hong Lan. Polaron spin relaxation in a two-dimensional quantum dot. Acta Physica Sinica, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [11] Li Yong-Fang, Ren Li-Qing, Ma Rui-Qiong, Fan Rong, Liu Juan. Implementing quantum control for the temporal evolution of the wave function of the quantum state by using a phase-controlled light field. Acta Physica Sinica, 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [12] Hu Chang-Cheng, Wang Gang, Ye Hui-Qi, Liu Bao-Li. Development of the transient spin grating system and its application in the study of spin transport. Acta Physica Sinica, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [13] Tang Nai-Yun. Spin polarized current transport and charge polarization effect in ferromagnetic GaMnN resonant tunneling diode. Acta Physica Sinica, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [14] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [15] Sun Zheng, Xu Zhong-Ying, Ruan Xue-Zhong, Ji Yang, Sun Bao-Quan, Ni Hai-Qiao. Spin relaxation dynamics in InAs monolayer and submonolayer. Acta Physica Sinica, 2007, 56(5): 2958-2961. doi: 10.7498/aps.56.2958
    [16] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [17] MENG QING-AN, HU CHUAN-MIN, CAO QI-JUAN, LI ZI-RONG. ORDER PARAMETER AND NMR RELAXATION OF THERMOTROPIC LIQUID CRYSTAL CPHOB. Acta Physica Sinica, 1997, 46(10): 1961-1964. doi: 10.7498/aps.46.1961
    [18] YANG DAI-WEN, YE CHAO-HUI. EFFECT OF QUADRUPOLAR NUCLEI ON THE RELAXATION IN AX SYSTEM BY RAMAN MAGNETIC RESONANCE. Acta Physica Sinica, 1991, 40(9): 1533-1538. doi: 10.7498/aps.40.1533
    [19] PAN SHAO-HUA, HOU MEI-YIN. ELECTRON SPIN RANDOMIZATION OF OPTICALLY PUMPED ALKALI-ATOMS IN THE SPIN TEMPERATURE LIMIT. Acta Physica Sinica, 1984, 33(8): 1177-1181. doi: 10.7498/aps.33.1177
    [20] MA BEN-KUN. SPIN-LATTICE RELAXATION. Acta Physica Sinica, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
Metrics
  • Abstract views:  8634
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2019
  • Accepted Date:  25 February 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回