Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer

Li Hui Jiang Min Zhu Zhen-Nan Xu Wen-Jie Xu Min-Xiang Peng Xin-Hua

Citation:

Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer

Li Hui, Jiang Min, Zhu Zhen-Nan, Xu Wen-Jie, Xu Min-Xiang, Peng Xin-Hua
PDF
HTML
Get Citation
  • The precise measurement of weak magnetic fields by using high-sensitivity magnetometers is not only widely used, but also promotes the development of many research fields. The magnetic field measurement capability of the magnetometer determines the potential and scope of its application, which means that research on its magnetic field measurement capability is essential.In this work, we develop a rubidium-xenon vapor cell atomic magnetometer. The cell filled with 5-torr 129Xe, 250-torr N2 and a droplet of enriched 87Rb is placed in the center of a five-layer magnetic shield with four sets of inner coils to control the internal magnetic field environment. In the cell, 129Xe is polarized by spin exchange collisions with 87Rb atoms, which are pumped with a circularly polarized laser beam at the D1 transition. If magnetic fields or pulses are applied to the cell, the polarization state of 87Rb and 129Xe will change and evolve, whose evolution process can be described by a pair of Bloch equations. The analysis of the Bloch equations indicates that the rubidium-xenon vapor cell atomic magnetometer can measure magnetic fields by two different methods. The magnetic field measurement capabilities of the two methods are experimentally calibrated respectively. The first method is to measure the alternating current (AC) magnetic fields by measuring the influence of the external magnetic fields on the polarization of the 87Rb atoms. The experimental results show that the sensitivity of the AC magnetic field measurement is about $1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }} $ in a frequency range of 2100 Hz, and the bandwidth is about 2.8 kHz. The second method is to measure the static magnetic fields by measuring the Larmor frequency of the hyperpolarized 129Xe in the cell. Considering that its measurement accuracy is limited by the relaxation of the hyperpolarized 129Xe, the transverse and longitudinal relaxation time are measured to be about 20.6 s and 21.5 s, respectively. Then, the experimental calibration results indicate that the static magnetic field measurement precision is about 9.4 pT and the measurement range exceeds 50 μT, which prove that the static magnetic field measurement can still be performed under geomagnetic field (50 μT). The rubidium-xenon vapor cell atomic magnetometer enables the measurement of AC magnetic fields and static magnetic fields in the same system. Compared with the spin exchange relaxation free (SERF) atomic magnetometer, the rubidium-xenon vapor cell atomic magnetometer has some unique advantages. For AC magnetic field measurement, it has a wider frequency range. For static magnetic field measurement, it can be performed under geomagnetic field and can give the magnetic field measurement value without using the calibration parameters of the system. These characteristics make the rubidium-xenon vapor cell atomic magnetometer have broad application prospects. It is expected to be applied to geomagnetic surveys, basic physics and other aspects of research.
      Corresponding author: Peng Xin-Hua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306600), the National Natural Science Foundation of China (Grant Nos. 11425523, 11661161018), and Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY050000).
    [1]

    Primdahl F 1979 J. Phys. E 12 241Google Scholar

    [2]

    杨波, 卜雄洙, 王新征, 于靖 2014 物理学报 63 200702Google Scholar

    Yang B, Bu X Z, Wang X Z, Yu J 2014 Acta Phys. Sin. 63 200702Google Scholar

    [3]

    张裕恒, 李玉芝, 郑捷飞 1984 物理学报 33 58Google Scholar

    Zhang Y H, Li Y Z, Zheng J F 1984 Acta Phys. Sin. 33 58Google Scholar

    [4]

    Lee L P, Char K, Colclough M S, Zaharchuk G 1991 Appl. Phys. Lett. 59 3051Google Scholar

    [5]

    刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 物理学报 52 2580Google Scholar

    Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580Google Scholar

    [6]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596Google Scholar

    [7]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [8]

    Savukov I M 2017 in High Sensitivity Magnetometers (Switzerland: Springer) pp 451–491

    [9]

    李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强 2010 物理学报 59 877Google Scholar

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877Google Scholar

    [10]

    顾源, 石荣晔, 王延辉 2014 物理学报 63 110701Google Scholar

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar

    [11]

    汪之国, 罗晖, 樊振方, 谢元平 2016 物理学报 65 210702Google Scholar

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702Google Scholar

    [12]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 物理学报 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [13]

    陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华 2017 中国激光 44 1004001

    Chen B T, Jiang M, Ji Y L, Bian J, Xu W J, Zhang H, Peng X H 2017 Chin. J. Lasers 44 1004001

    [14]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [15]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [16]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [17]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [18]

    Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H, Lv H J 2018 Chin. Phys. B 27 57602Google Scholar

    [19]

    Happer W, Miron E, Schaefer S, Schreiber D, Van Wijngaarden W A, Zeng X 1984 Phys. Rev. A 29 3092Google Scholar

    [20]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar

    [21]

    Walker T G 1989 Phys. Rev. A 40 4959Google Scholar

    [22]

    Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R, Happer W 1998 Phys. Rev. A 58 1412Google Scholar

    [23]

    李森麟, 唐天荣, 孙献平, 曾锡之, 刘煜炎, 王枫 1988 科学通报 16 3

    Li S L, Tang T R, Sun X P, Zeng X Z, Liu Y Y, Wang F 1988 Sci. Bull. 16 3

    [24]

    Parnell S R, Deppe M H, Parra-Robles J, Wild J M 2010 J. Appl. Phys. 108 064908Google Scholar

    [25]

    Jiang P, Wang Z G, Luo H 2017 Optik (Stuttg) 138 341Google Scholar

    [26]

    Zhan X, Jiang Q Y, Wang Z G, Luo H, Zhao H C 2018 AIP Adv. 8 95104Google Scholar

    [27]

    Jiang M, Li H, Zhu Z N, Peng X H, Budker D 2019 arXiv Prepr. arXiv1901 00970

    [28]

    Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University

    [29]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801Google Scholar

    [30]

    Savukov I M, Romalis M V 2005 Phys. Rev. A 71 23405Google Scholar

    [31]

    Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V, Zhivonitko V V 2017 Chem. Eur. J. 23 725Google Scholar

    [32]

    Goodson B. M 2002 J. Magn. Reson 155 157Google Scholar

    [33]

    Ma Z L, Sorte E G, Saam B 2011 Phys. Rev. Lett. 106 193005Google Scholar

    [34]

    Jau Y Y, Kuzma N N, Happer W 2002 Phys. Rev. A 66 52710Google Scholar

    [35]

    Rosenberry M A, Chupp T E 2001 Phys. Rev. Lett. 86 22Google Scholar

    [36]

    Regan B C, Commins E D, Schmidt C J, DeMille D 2002 Phys. Rev. Lett. 88 071805Google Scholar

    [37]

    Fang J C, Qin J, Wan S A, Chen Y, Li R J 2013 Chin. Sci. Bull. 58 1512Google Scholar

    [38]

    Arvanitaki A, Geraci A A 2014 Phys. Rev. Lett. 113 161801Google Scholar

    [39]

    Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001Google Scholar

  • 图 1  铷-氙气室原子磁力仪装置示意图

    Figure 1.  Schematic diagram of the rubidium-xenon vapor cell atomic magnetometer.

    图 2  (a) 铷-氙气室原子磁力仪频率响应曲线; (b) 300 Hz定标磁场噪声曲线; (c) 1200 Hz定标磁场噪声曲线; (d) 1200 Hz定标磁场噪声曲线

    Figure 2.  (a) The frequency response curve of rubidium-xenon vapor cell atomic magnetometer; (b) the calibration magnetic field noise curve at frequency 300 Hz; (c) the calibration magnetic field noise curve at frequency 1200 Hz; (d) the calibration magnetic field noise curve at frequency 2100 Hz

    图 3  (a) 超极化$^{129}{\rm{Xe}}$的FID信号; (b) FID信号的FFT

    Figure 3.  (a) FID signal of the hyperpolarized $^{129}{\rm{Xe}}$; (b) FFT of the FID signal.

    图 4  超极化$^{129}{\rm{Xe}}$信号强度随时间τ的变化曲线

    Figure 4.  The curve of the hyperpolarized $^{129}{\rm{Xe}}$ signal strength versus time τ.

    图 5  超极化$^{129}{\rm{Xe}}$拉莫频率的概率密度统计分布直方图 (a) 由铷-氙气室原子磁力仪系统本身与电流源不稳定性导致; (b) 由电流源不稳定性导致

    Figure 5.  Probability density statistical distribution histogram of the Larmor frequency of the hyperpolarized $^{129}{\rm{Xe}}$: (a) Caused by the rubidium-xenon vapor cell atomic magnetometer system itself and the current source instability; (b) caused by the current source instability.

    图 6  超极化$^{129}{\rm{Xe}}$信号强度随静磁场强度的变化曲线

    Figure 6.  The curve of the hyperpolarized $^{129}{\rm{Xe}}$ signal strength versus the static magnetic field strength.

  • [1]

    Primdahl F 1979 J. Phys. E 12 241Google Scholar

    [2]

    杨波, 卜雄洙, 王新征, 于靖 2014 物理学报 63 200702Google Scholar

    Yang B, Bu X Z, Wang X Z, Yu J 2014 Acta Phys. Sin. 63 200702Google Scholar

    [3]

    张裕恒, 李玉芝, 郑捷飞 1984 物理学报 33 58Google Scholar

    Zhang Y H, Li Y Z, Zheng J F 1984 Acta Phys. Sin. 33 58Google Scholar

    [4]

    Lee L P, Char K, Colclough M S, Zaharchuk G 1991 Appl. Phys. Lett. 59 3051Google Scholar

    [5]

    刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 物理学报 52 2580Google Scholar

    Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580Google Scholar

    [6]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596Google Scholar

    [7]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [8]

    Savukov I M 2017 in High Sensitivity Magnetometers (Switzerland: Springer) pp 451–491

    [9]

    李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强 2010 物理学报 59 877Google Scholar

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877Google Scholar

    [10]

    顾源, 石荣晔, 王延辉 2014 物理学报 63 110701Google Scholar

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar

    [11]

    汪之国, 罗晖, 樊振方, 谢元平 2016 物理学报 65 210702Google Scholar

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702Google Scholar

    [12]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 物理学报 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [13]

    陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华 2017 中国激光 44 1004001

    Chen B T, Jiang M, Ji Y L, Bian J, Xu W J, Zhang H, Peng X H 2017 Chin. J. Lasers 44 1004001

    [14]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [15]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [16]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [17]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [18]

    Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H, Lv H J 2018 Chin. Phys. B 27 57602Google Scholar

    [19]

    Happer W, Miron E, Schaefer S, Schreiber D, Van Wijngaarden W A, Zeng X 1984 Phys. Rev. A 29 3092Google Scholar

    [20]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar

    [21]

    Walker T G 1989 Phys. Rev. A 40 4959Google Scholar

    [22]

    Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R, Happer W 1998 Phys. Rev. A 58 1412Google Scholar

    [23]

    李森麟, 唐天荣, 孙献平, 曾锡之, 刘煜炎, 王枫 1988 科学通报 16 3

    Li S L, Tang T R, Sun X P, Zeng X Z, Liu Y Y, Wang F 1988 Sci. Bull. 16 3

    [24]

    Parnell S R, Deppe M H, Parra-Robles J, Wild J M 2010 J. Appl. Phys. 108 064908Google Scholar

    [25]

    Jiang P, Wang Z G, Luo H 2017 Optik (Stuttg) 138 341Google Scholar

    [26]

    Zhan X, Jiang Q Y, Wang Z G, Luo H, Zhao H C 2018 AIP Adv. 8 95104Google Scholar

    [27]

    Jiang M, Li H, Zhu Z N, Peng X H, Budker D 2019 arXiv Prepr. arXiv1901 00970

    [28]

    Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University

    [29]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801Google Scholar

    [30]

    Savukov I M, Romalis M V 2005 Phys. Rev. A 71 23405Google Scholar

    [31]

    Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V, Zhivonitko V V 2017 Chem. Eur. J. 23 725Google Scholar

    [32]

    Goodson B. M 2002 J. Magn. Reson 155 157Google Scholar

    [33]

    Ma Z L, Sorte E G, Saam B 2011 Phys. Rev. Lett. 106 193005Google Scholar

    [34]

    Jau Y Y, Kuzma N N, Happer W 2002 Phys. Rev. A 66 52710Google Scholar

    [35]

    Rosenberry M A, Chupp T E 2001 Phys. Rev. Lett. 86 22Google Scholar

    [36]

    Regan B C, Commins E D, Schmidt C J, DeMille D 2002 Phys. Rev. Lett. 88 071805Google Scholar

    [37]

    Fang J C, Qin J, Wan S A, Chen Y, Li R J 2013 Chin. Sci. Bull. 58 1512Google Scholar

    [38]

    Arvanitaki A, Geraci A A 2014 Phys. Rev. Lett. 113 161801Google Scholar

    [39]

    Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001Google Scholar

  • [1] Wu Lie-Lie, Ren Yi-Chong, Xue Fei. Precision measurement of magnetic fields using suspended ferromagnetic torsional oscillator and its applications. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241538
    [2] Li Kai-Xiang, Liu Run-Cong. Optimization design method of excitation magnetic field in motion induced eddy current magnetic field testing. Acta Physica Sinica, 2023, 72(16): 168105. doi: 10.7498/aps.72.20230064
    [3] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong. Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions. Acta Physica Sinica, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [4] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun. Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms. Acta Physica Sinica, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [5] Han Bo, Liang Ya-Qiong. Measurement of magnetic field of capacitor-coil target using proton radiography. Acta Physica Sinica, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [6] Zhang Ruo-Zhou, Qin Ming-Yang, Zhang Lu, You Li-Xing, Dong Chao, Sha Peng, Yuan Jie, Jin Kui. Measurement of magnetic penetration depth in superconducting films by two-coil mutual inductance technique. Acta Physica Sinica, 2020, 69(4): 047401. doi: 10.7498/aps.69.20191758
    [7] Liu Wan-Xin, Chen Rui, Liu Yong-Jie, Wang Jun-Feng, Han Xiao-Tao, Yang Ming. A pulsed high magnetic field facility for electric polarization measurements. Acta Physica Sinica, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [8] Yang Chen, Zuo Guan-Hua, Tian Zhuang-Zhuang, Zhang Yu-Chi, Zhang Tian-Cai. Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure. Acta Physica Sinica, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [9] Zhang Yue, Hou Fei-Yan, Liu Tao, Zhang Xiao-Fei, Zhang Shou-Gang, Dong Rui-Fang. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide. Acta Physica Sinica, 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [10] Feng Gao-Ping, Sun Yu, Zheng Xin, Hu Shui-Ming. Design and measurement of a magnetic field for precision spectroscopy of helium. Acta Physica Sinica, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [11] Jing Qing-Li, Du Chun-Guang, Gao Jian-Cun. New application of surface plasmon resonance-measurement of weak magnetic field. Acta Physica Sinica, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [12] Wen Feng, Wu Bao-Jian, Li Zhi, Li Shu-Biao. Temperature-insensitive magnetic-field measurement using all-fiber Sagnac interferometers. Acta Physica Sinica, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [13] Chen Jie, Lu Xi-Wen. A new method for predicting the induced magnetic field of naval vessels. Acta Physica Sinica, 2010, 59(1): 239-245. doi: 10.7498/aps.59.239
    [14] Zhu Jing, Lü Chang-Gui, Hong Xu-Sheng, Cui Yi-Ping. Theoretical study on solvent effect of the molecular first hyperpolarizability. Acta Physica Sinica, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [15] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei. Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [16] Li Hai-Peng, Han Kui, Lu Zhen-Ping, Shen Xiao-Peng, Huang Zhi-Min, Zhang Wen-Tao, Bai Lei. Theoretical investigation on dispersion effect and two-photon resonance enhancement of molecular first hyperpolarizability. Acta Physica Sinica, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [17] ZHANG YAN-PENG, GAN CHEN-LI, ZHU JING-PING, TANG TIAN-TONG, FU PAN-MING. ENERGY-LEVEL DIFFERENCE AND LASER ABSOLUTE FREQUENCY MEASUREMENT BY POLARIZATION BEATS SPECTROSCOPY WITH PHASE-CONJUGATION GEOMETRY. Acta Physica Sinica, 1999, 48(9): 1667-1675. doi: 10.7498/aps.48.1667
    [18] ZHU XIAN-FANG, SHUI JIA-PENG. ACCURATE LINEAR DAMPING CALCULATION FORMULA FOR FREE VIBRATION SYSTEM. Acta Physica Sinica, 1996, 45(6): 1010-1015. doi: 10.7498/aps.45.1010
    [19] WU HANG-SHENG, JI GUANG-DA, LIU FU-SUI. EFFECT OF A MAGNETIC FIELD ON THE HEIGHT OF THE MICROWAVE-INDUCED STEP. Acta Physica Sinica, 1977, 26(4): 353-362. doi: 10.7498/aps.26.353
    [20] WEI YUNG-CHIO. MEASUREMENTS OF ATTENUATION OF SOUND IN FOGGY AIR AT LOW AUDIBLE FREQUENCIES. Acta Physica Sinica, 1954, 10(3): 187-208. doi: 10.7498/aps.10.187
Metrics
  • Abstract views:  10302
  • PDF Downloads:  186
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2019
  • Accepted Date:  13 June 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回