-
The frequency entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) possess wide applications in quantum optics and relevant fields.To facilitate the practical quantum information technologies,particularly in optical fiber links,a frequency entangled source at telecommunication wavelength with features of compactness,portability,high efficiency and miniaturization is highly desired.In this paper,we report the experimental generation of a miniaturized frequency entangled source in telecommunication band from a 10 mm-long type-Ⅱ periodically poled lithium niobate (PPLN) waveguide pumped by a 780 nm distributed Bragg reflector (DBR) laser diode.The frequency entangled photon pairs generated by SPDC possess wide applications in quantum optics and relevant fields.When the DBR laser diode is driven by a current of 170 mA at a temperature controlled to 20℃,the output power is measured to be 70.4 mW with a central wavelength of 780.585 nm.Under this pump,the orthogonally-polarized photon pairs are generated and output from the PPLN waveguide.After filtering out the remaining pump by three high-performance long-pass filters mounted on an adjustable U-type fiber bench,the photon-pair generation rate,spectral and temporal properties of the generated frequency entangled source are measured.The results show that the generation rate of the photon pairs,after being corrected for the detection efficiencies of the single photon detectors and the optical losses,is achieved to be 1.86×107 s-1 at a pump power of 44.9 mW (coupled into the waveguide).Optimizing the working temperature of the waveguide and fixing it at 46.5℃,the frequency degeneracy of the SPDC generated photon pairs is realized.Based on the coincidence measurement setup together with two infrared spectrometers,the spectra of the signal and idler photons are obtained with their center wavelengths of 1561.43 nm and 1561.45 nm,and their 3-dB bandwidths of 3.62 nm and 3.60 nm respectively.The joint spectrum of the photon pair is observed,showing a joint spectrum bandwidth of 3.18 nm.The degree of frequency entanglement is quantified to be 1.13 according to the bandwidth ratio between the single photon spectrum and the joint spectrum.Furthermore,based on the Hong-Ou-Mandel (HOM) interferometric coincidence measurement setup,a visibility of about 96.1% is observed,which indicates the very good frequency indistinguishibility of the down-converted biphotons.The measured 3-dB width of the HOM dip is 1.47 ps and shows good agreement with the measured single-photon spectral bandwidth.The experimental results lay a solid foundation for developing portable,miniaturized frequency entangled sources at telecommunication band for the further applications in quantum information areas,such as quantum time synchronization.
-
Keywords:
- miniaturized frequency entangled source /
- type-II periodically poled lithium niobate waveguide /
- quantum characterization
[1] Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag) pp50-55
[2] Zeilinger A 1999 Rev. Mod. Phys. 71 S288
[3] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
[6] Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370
[7] Squier J, Mller M 2001 Rev. Sci. Instrum. 72 2855
[8] Brasselet S, Floc'h V L, Treussart F, Roch J F, Zyss J, Botzung-Appert E, Ibanez A 2003 Phys. Rev. Lett. 92 207401
[9] Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005
[10] Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817
[11] Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429
[12] Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601
[13] Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601
[14] Zerom P, Chan K W C, Howell J C, Boyd R W 2011 Phys. Rev. A 84 061804
[15] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
[16] Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304
[17] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429
[18] Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833
[19] Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594
[20] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
[21] Boyd R W 1992 Nonlinear Optics (San Diego: Academic Press) pp74-83
[22] Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773
[23] Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377
[24] Fiorentino M, Beausoleil R G 2008 Opt. Express 16 20149
[25] Hentschel M, Hbel H, Poppe A, Zeilinger A 2009 Opt. Express 17 23153
[26] Tanzilli S, Tittel W, de Riedmatten H, Zbinden H, Baldi P, de Micheli M P, Ostrowsky D B, Gisin N 2002 Eur. Phys. J. D 18 155
[27] Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H, Gisin N 2008 New J. Phys. 10 023027
[28] Chen J, Fan J, Migdall A 2010 Proc. SPIE 17 6727
[29] Lee K F, Chen J, Liang C, Li X, Voss P L, Kumar P 2006 Opt. Lett. 31 1905
[30] Medic M, Altepeter J B, Hall M A, Patel M, Kumar P 2010 Opt. Lett. 35 802
[31] McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G, Wadsworth W J 2009 Opt. Express 17 6156
[32] Fujii G, Namekata N, Motoya M, Kurimura S, Inoue S 2007 Opt. Express 15 12769
[33] Franson J D 1992 Phys. Rev. A 45 3126
[34] Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659
[35] Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241
[36] Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902
[37] Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417
[38] Fitch M J, Franson J D 2002 Phys. Rev. A 65 053809
[39] Hou F Y, Dong R F, Quan R A, Zhang Y, Bai Y, Liu T, Zhang S G, Zhang T Y 2012 Adv. Space Res. 50 1489
[40] Hou F Y, Xiao X, Quan R A, Wang M M, Zhai Y W, Wang S F, Liu T, Zhang S G, Zhang T Y, Dong R F 2016 Appl. Phys. B 122 128
[41] Fedorov M V, Efremov M A, Volkov P A, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S467
[42] Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044
[43] Mori S, Söderholm J, Namekata N, Inoue S 2008 Optics Commun. 264 156
-
[1] Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag) pp50-55
[2] Zeilinger A 1999 Rev. Mod. Phys. 71 S288
[3] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
[6] Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370
[7] Squier J, Mller M 2001 Rev. Sci. Instrum. 72 2855
[8] Brasselet S, Floc'h V L, Treussart F, Roch J F, Zyss J, Botzung-Appert E, Ibanez A 2003 Phys. Rev. Lett. 92 207401
[9] Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005
[10] Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817
[11] Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429
[12] Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601
[13] Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601
[14] Zerom P, Chan K W C, Howell J C, Boyd R W 2011 Phys. Rev. A 84 061804
[15] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
[16] Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304
[17] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429
[18] Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833
[19] Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594
[20] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330
[21] Boyd R W 1992 Nonlinear Optics (San Diego: Academic Press) pp74-83
[22] Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773
[23] Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377
[24] Fiorentino M, Beausoleil R G 2008 Opt. Express 16 20149
[25] Hentschel M, Hbel H, Poppe A, Zeilinger A 2009 Opt. Express 17 23153
[26] Tanzilli S, Tittel W, de Riedmatten H, Zbinden H, Baldi P, de Micheli M P, Ostrowsky D B, Gisin N 2002 Eur. Phys. J. D 18 155
[27] Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H, Gisin N 2008 New J. Phys. 10 023027
[28] Chen J, Fan J, Migdall A 2010 Proc. SPIE 17 6727
[29] Lee K F, Chen J, Liang C, Li X, Voss P L, Kumar P 2006 Opt. Lett. 31 1905
[30] Medic M, Altepeter J B, Hall M A, Patel M, Kumar P 2010 Opt. Lett. 35 802
[31] McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G, Wadsworth W J 2009 Opt. Express 17 6156
[32] Fujii G, Namekata N, Motoya M, Kurimura S, Inoue S 2007 Opt. Express 15 12769
[33] Franson J D 1992 Phys. Rev. A 45 3126
[34] Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659
[35] Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241
[36] Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902
[37] Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417
[38] Fitch M J, Franson J D 2002 Phys. Rev. A 65 053809
[39] Hou F Y, Dong R F, Quan R A, Zhang Y, Bai Y, Liu T, Zhang S G, Zhang T Y 2012 Adv. Space Res. 50 1489
[40] Hou F Y, Xiao X, Quan R A, Wang M M, Zhai Y W, Wang S F, Liu T, Zhang S G, Zhang T Y, Dong R F 2016 Appl. Phys. B 122 128
[41] Fedorov M V, Efremov M A, Volkov P A, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S467
[42] Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044
[43] Mori S, Söderholm J, Namekata N, Inoue S 2008 Optics Commun. 264 156
Catalog
Metrics
- Abstract views: 6373
- PDF Downloads: 183
- Cited By: 0