-
Mid-infrared quantum light sources hold broad application prospects in fields such as gas sensing and infrared thermal imaging. However, currently used mid-infrared quantum entanglement light sources primarily rely on bulk periodically poled lithium niobate (PPLN) crystals, which suffer from limitations in both brightness and integration. This paper proposes a theoretical scheme based on lithium niobate thin films utilizing a 1556.9 nm pump to generate entangled photon pairs with a central wavelength of 3113.8 nm. Through optimized waveguide structure and periodic polarization design, Type-II phase matching and group velocity matching are achieved. This enables transverse electric (TE)-polarized pump input to downconvert to generate photon pairs with TE and transverse magnetic (TM) polarization. Furthermore, by combining a domain arrangement algorithm for customized design of the PPLN waveguide’s polarization direction, precise phase matching is achieved, yielding a quantum light source with a purity as high as 0.999 and a brightness reaching 6.18 × 106 cps/mW, representing a three-order-of-magnitude enhancement over bulk PPLN crystal sources. This work offers a promising solution for realizing high-brightness, high-purity on-chip quantum light sources in the mid-infrared band.
-
Keywords:
- Lithium niobate (LN) waveguide /
- poling period design /
- mid infrared (MIR) band /
- quantum light source
-
[1] 金锐博, 田颖, “中红外波段量子光源的研究进展,” 安徽大学学报: 自然科学版 45, 10 (2021).
[2] E. Tournié and L. Cerutti, Mid-infrared optoelectronics: materials, devices, and applications (Woodhead publishing, 2019).
[3] M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer Science & Business Media, 2008).
[4] P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in nondegenerate photon pairs at telecom wavelengths,” Optics Letters 41, 5074–5077 (2016).
[5] F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Optics Express 24, 3248–3257 (2016).
[6] A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Advanced Materials 27, 4597–4603 (2015).
[7] M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nature Communications 8, 15184 (2017).
[8] Z.-Q.-Z. Han, X.-H. Wang, J.-P. Li, B.-W. Liu, Z.-H. Zhou, H. Zhang, Y.-H. Li, Z.-Y. Zhou, and B.-S. Shi, “High resolution up-conversion imaging in the 10 µm band under incoherent illumination,” arXiv preprint arXiv:2505.24367 (2025).
[9] J. Shi, T. T. W. Wong, Y. He, L. Li, and L. V. Wang, “High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy,” Nat. Photonics 13, 609 (2019).
[10] Q. Wang, L. Hao, Y. Zhang, L. Xu, C. Yang, X. Yang, and Y. Zhao, “Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffce to beat the shot-noise limit,” Optics Express 24, 5045–5056 (2016).
[11] S. H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
[12] M. M. M, A. Trenti, S. Piccione, G. Fontana, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Communications 8, 15184 (2017).
[13] S. Prabhakar, T. Shields, A. C. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2.1 µm,” Sci. Adv. 6, eaay5195 (2020).
[14] B. Wei, W.-H. Cai, C. Ding, G.-W. Deng, R. Shimizu, Q. Zhou, and R.-B. Jin, “Mid-infrared spectrally-uncorrelated biphotons generation from doped ppln: a theoretical investigation,” Optics Express 29, 256–271 (2020).
[15] C.-T. Zhang, X.-T. Shi, W.-X. Zhu, J.-L. Zhu, X.-Y. Hao, and R.-B. Jin, “Preparation of spectrally pure single-photon source at 3 µm mid-infrared band from lithium niobate crystal with domain sequence algorithm,” Acta Physica Sinica 71 (2022).
[16] W.-H. Cai, Y. Tian, and R.-B. Jin, “Mid-infrared spectrally pure single-photon states generation from 22 nonlinear optical crystals,” Quantum Engineering 2023, 6929253 (2023).
[17] Z. Ge, Z.-Q.-Z. Han, F. Yang, X.-H. Wang, Y.-H. Li, Y. Li, M.-Y. Gao, R.-H. Chen, S.-J. Niu, M.-Y. Xie et al., “Quantum entanglement and interference at 3 µm,” Science Advances 10, eadm7565 (2024).
[18] W.-Z. Li, C. Zhou, Y. Wang, L. Chen, X.-H. Wang, D.-Y. Zheng, M. Yu Xie, Y.-H. Li, Z.-Y. Zhou, W.-S. Bao et al., “Mid-infrared and telecom band two-color entanglement source for quantum communication,” Laser & Photonics Reviews p. e00338 (2025).
[19] W.-X. Zhu and R.-B. Jin, “4780 nm ultra-broadband entangled biphotons from a chirped PPLN,” Applied Physics Letters 126, 014001 (2025).
[20] Y.-H. Chen, B. Ji, N.-Q. Li, Z. Jiang, W. L. andYu Dong Li, L.-S. Feng, T.-F. Wu, and G.-Q. He, “Compact generation scheme of path-frequency hyperentangled photons using 2d periodical nonlinear photonic crystal,” Chinese Physics B 32, 120307 (2023).
[21] X. Liu, C. Chen, R. Ge, J. Wu, X. Chen, and Y. Chen, “Ultralow-threshold lithium niobate photonic crystal nanocavity laser,” Nano Letters 25, 6454–6460 (2025).
[22] X.-X. Fang, G. Shentu, and H. Lu, “Broadband quantum photon source in step-chirped periodically poled lithium niobate waveguide,” arXiv preprint arXiv:2510.03619 (2025).
[23] Y. Chen, B. Ji, T. Wu, and G. He, “Hyperentangled-state generation in nanophotonic periodically poled lithium niobate waveguides,” Phys. Rev. Appl. 23, 024030 (2025).
[24] R.-B. Jin, Z.-Q. Zeng, D. Xu, C.-Z. Yuan, B.-H. Li, Y. Wang, R. Shimizu, M. Takeoka, M. Fujiwara, M. Sasaki, and P.-X. Lu, “Spectrally resolved franson interference,” Sci. China: Phys., Mech. Astron. 67, 250312 (2024).
[25] P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New Journal of Physics 10, 093011 (2008).
[26] K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform 8, 19–26 (2011).
[27] R.-B. Jin and R. Shimizu, “Extended Wiener–Khinchin theorem for quantum spectral analysis,” Optica 5, 93–98 (2018).
[28] O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Applied Physics B 91, 343–348 (2008).
[29] R.-B. Jin, G.-Q. Chen, F. Laudenbach, S. Zhao, and P.-X. Lu, “Thermal effects of the quantum states generated from the isomorphs of ppktp crystal,” Optics & Laser Technology 109, 222–226 (2019).
[30] F. Grafftti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2, 035001 (2017).
[31] X. Shi, S. S. Mohanraj, V. Dhyani, A. A. Baiju, S. Wang, J. Sun, L. Zhou, A. Paterova, V. Leong, and D. Zhu, “Effcient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides,” Light: Science & Applications 13, 282 (2024).
[32] J. Schneeloch, S. H. Knarr, D. F. Bogorin, M. L. Levangie, C. C. Tison, R. Frank, G. A. Howland, M. L. Fanto, and P. M. Alsing, “Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion,” Journal of Optics 21, 043501 (2019).
[33] J.-L. Zhu, W.-X. Zhu, X.-T. Shi, C.-T. Zhang, X. Hao, Z.-X. Yang, and R.-B. Jin, “Design of midinfrared entangled photon sources using lithium niobate,” Journal of the Optical Society of America B 40, A9–A16 (2022).
[34] J.-W. Ying, J.-Y. Wang, Y.-X. Xiao, S.-P. Gu, X.-F. Wang, W. Zhong, M.-M. Du, X.-Y. Li, S.- T. Shen, A.-L. Zhang et al., “Passive-state preparation for quantum secure direct communication,” Science China Physics, Mechanics & Astronomy 68, 240312 (2025).
Metrics
- Abstract views: 22
- PDF Downloads: 0
- Cited By: 0









下载: