Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mid-infrared pure-state quantum light source based on lithium niobate waveguides

Huang Yu-Hang Wang Dong-Zhou Ke Shao-Lin Jin Rui-Bo

Citation:

Mid-infrared pure-state quantum light source based on lithium niobate waveguides

Huang Yu-Hang, Wang Dong-Zhou, Ke Shao-Lin, Jin Rui-Bo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Mid-infrared quantum light sources hold broad application prospects in fields such as gas sensing and infrared thermal imaging. However, currently used mid-infrared quantum entanglement light sources primarily rely on bulk periodically poled lithium niobate (PPLN) crystals, which suffer from limitations in both brightness and integration. This paper proposes a theoretical scheme based on lithium niobate thin films utilizing a 1556.9 nm pump to generate entangled photon pairs with a central wavelength of 3113.8 nm. Through optimized waveguide structure and periodic polarization design, Type-II phase matching and group velocity matching are achieved. This enables transverse electric (TE)-polarized pump input to downconvert to generate photon pairs with TE and transverse magnetic (TM) polarization. Furthermore, by combining a domain arrangement algorithm for customized design of the PPLN waveguide’s polarization direction, precise phase matching is achieved, yielding a quantum light source with a purity as high as 0.999 and a brightness reaching 6.18 × 106 cps/mW, representing a three-order-of-magnitude enhancement over bulk PPLN crystal sources. This work offers a promising solution for realizing high-brightness, high-purity on-chip quantum light sources in the mid-infrared band.
  • [1]

    金锐博, 田颖, “中红外波段量子光源的研究进展,” 安徽大学学报: 自然科学版 45, 10 (2021).

    [2]

    E. Tournié and L. Cerutti, Mid-infrared optoelectronics: materials, devices, and applications (Woodhead publishing, 2019).

    [3]

    M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer Science & Business Media, 2008).

    [4]

    P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in nondegenerate photon pairs at telecom wavelengths,” Optics Letters 41, 5074–5077 (2016).

    [5]

    F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Optics Express 24, 3248–3257 (2016).

    [6]

    A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Advanced Materials 27, 4597–4603 (2015).

    [7]

    M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nature Communications 8, 15184 (2017).

    [8]

    Z.-Q.-Z. Han, X.-H. Wang, J.-P. Li, B.-W. Liu, Z.-H. Zhou, H. Zhang, Y.-H. Li, Z.-Y. Zhou, and B.-S. Shi, “High resolution up-conversion imaging in the 10 µm band under incoherent illumination,” arXiv preprint arXiv:2505.24367 (2025).

    [9]

    J. Shi, T. T. W. Wong, Y. He, L. Li, and L. V. Wang, “High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy,” Nat. Photonics 13, 609 (2019).

    [10]

    Q. Wang, L. Hao, Y. Zhang, L. Xu, C. Yang, X. Yang, and Y. Zhao, “Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffce to beat the shot-noise limit,” Optics Express 24, 5045–5056 (2016).

    [11]

    S. H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).

    [12]

    M. M. M, A. Trenti, S. Piccione, G. Fontana, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Communications 8, 15184 (2017).

    [13]

    S. Prabhakar, T. Shields, A. C. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2.1 µm,” Sci. Adv. 6, eaay5195 (2020).

    [14]

    B. Wei, W.-H. Cai, C. Ding, G.-W. Deng, R. Shimizu, Q. Zhou, and R.-B. Jin, “Mid-infrared spectrally-uncorrelated biphotons generation from doped ppln: a theoretical investigation,” Optics Express 29, 256–271 (2020).

    [15]

    C.-T. Zhang, X.-T. Shi, W.-X. Zhu, J.-L. Zhu, X.-Y. Hao, and R.-B. Jin, “Preparation of spectrally pure single-photon source at 3 µm mid-infrared band from lithium niobate crystal with domain sequence algorithm,” Acta Physica Sinica 71 (2022).

    [16]

    W.-H. Cai, Y. Tian, and R.-B. Jin, “Mid-infrared spectrally pure single-photon states generation from 22 nonlinear optical crystals,” Quantum Engineering 2023, 6929253 (2023).

    [17]

    Z. Ge, Z.-Q.-Z. Han, F. Yang, X.-H. Wang, Y.-H. Li, Y. Li, M.-Y. Gao, R.-H. Chen, S.-J. Niu, M.-Y. Xie et al., “Quantum entanglement and interference at 3 µm,” Science Advances 10, eadm7565 (2024).

    [18]

    W.-Z. Li, C. Zhou, Y. Wang, L. Chen, X.-H. Wang, D.-Y. Zheng, M. Yu Xie, Y.-H. Li, Z.-Y. Zhou, W.-S. Bao et al., “Mid-infrared and telecom band two-color entanglement source for quantum communication,” Laser & Photonics Reviews p. e00338 (2025).

    [19]

    W.-X. Zhu and R.-B. Jin, “4780 nm ultra-broadband entangled biphotons from a chirped PPLN,” Applied Physics Letters 126, 014001 (2025).

    [20]

    Y.-H. Chen, B. Ji, N.-Q. Li, Z. Jiang, W. L. andYu Dong Li, L.-S. Feng, T.-F. Wu, and G.-Q. He, “Compact generation scheme of path-frequency hyperentangled photons using 2d periodical nonlinear photonic crystal,” Chinese Physics B 32, 120307 (2023).

    [21]

    X. Liu, C. Chen, R. Ge, J. Wu, X. Chen, and Y. Chen, “Ultralow-threshold lithium niobate photonic crystal nanocavity laser,” Nano Letters 25, 6454–6460 (2025).

    [22]

    X.-X. Fang, G. Shentu, and H. Lu, “Broadband quantum photon source in step-chirped periodically poled lithium niobate waveguide,” arXiv preprint arXiv:2510.03619 (2025).

    [23]

    Y. Chen, B. Ji, T. Wu, and G. He, “Hyperentangled-state generation in nanophotonic periodically poled lithium niobate waveguides,” Phys. Rev. Appl. 23, 024030 (2025).

    [24]

    R.-B. Jin, Z.-Q. Zeng, D. Xu, C.-Z. Yuan, B.-H. Li, Y. Wang, R. Shimizu, M. Takeoka, M. Fujiwara, M. Sasaki, and P.-X. Lu, “Spectrally resolved franson interference,” Sci. China: Phys., Mech. Astron. 67, 250312 (2024).

    [25]

    P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New Journal of Physics 10, 093011 (2008).

    [26]

    K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform 8, 19–26 (2011).

    [27]

    R.-B. Jin and R. Shimizu, “Extended Wiener–Khinchin theorem for quantum spectral analysis,” Optica 5, 93–98 (2018).

    [28]

    O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Applied Physics B 91, 343–348 (2008).

    [29]

    R.-B. Jin, G.-Q. Chen, F. Laudenbach, S. Zhao, and P.-X. Lu, “Thermal effects of the quantum states generated from the isomorphs of ppktp crystal,” Optics & Laser Technology 109, 222–226 (2019).

    [30]

    F. Grafftti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2, 035001 (2017).

    [31]

    X. Shi, S. S. Mohanraj, V. Dhyani, A. A. Baiju, S. Wang, J. Sun, L. Zhou, A. Paterova, V. Leong, and D. Zhu, “Effcient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides,” Light: Science & Applications 13, 282 (2024).

    [32]

    J. Schneeloch, S. H. Knarr, D. F. Bogorin, M. L. Levangie, C. C. Tison, R. Frank, G. A. Howland, M. L. Fanto, and P. M. Alsing, “Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion,” Journal of Optics 21, 043501 (2019).

    [33]

    J.-L. Zhu, W.-X. Zhu, X.-T. Shi, C.-T. Zhang, X. Hao, Z.-X. Yang, and R.-B. Jin, “Design of midinfrared entangled photon sources using lithium niobate,” Journal of the Optical Society of America B 40, A9–A16 (2022).

    [34]

    J.-W. Ying, J.-Y. Wang, Y.-X. Xiao, S.-P. Gu, X.-F. Wang, W. Zhong, M.-M. Du, X.-Y. Li, S.- T. Shen, A.-L. Zhang et al., “Passive-state preparation for quantum secure direct communication,” Science China Physics, Mechanics & Astronomy 68, 240312 (2025).

  • [1] Liu Li-Qiang, Su Wei-Lun, Liu Jun-Ming, Zou Yu, Hong Li-Hong, Li Zhi-Yuan. Design and angular robustness test of chirped periodically poled lithium niobate crystal for 1064 nm second-harmonic generation experiment. Acta Physica Sinica, doi: 10.7498/aps.73.20240778
    [2] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, doi: 10.7498/aps.73.20241274
    [3] Chen Bo, Liu Jin, Li Jun-Tao, Wang Xue-Hua. Research progress of integrated quantum light sources with orbital angular momentum. Acta Physica Sinica, doi: 10.7498/aps.73.20240791
    [4] Li Ming-Zhou, Li Zhi-Yuan. Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation. Acta Physica Sinica, doi: 10.7498/aps.71.20220016
    [5] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, doi: 10.7498/aps.71.20211217
    [6] Zhang Chen-Tao, Shi Xiao-Tao, Zhu Wen-Xin, Zhu Jin-Long, Hao Xiang-Ying, Jin Rui-Bo. Preparation of spectrally pure single-photon source at 3 μm mid-infrared band from lithium niobate crystal with domain sequence algorithm. Acta Physica Sinica, doi: 10.7498/aps.71.20220739
    [7] Zhang Yue, Hou Fei-Yan, Liu Tao, Zhang Xiao-Fei, Zhang Shou-Gang, Dong Rui-Fang. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide. Acta Physica Sinica, doi: 10.7498/aps.67.20180329
    [8] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution. Acta Physica Sinica, doi: 10.7498/aps.64.114207
    [9] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. Analyses of wavelength dependence of the electro-optic overlap integral factor for LiNbO3 channel waveguides. Acta Physica Sinica, doi: 10.7498/aps.63.077801
    [10] Wang Xiao-Yan, Li Shu-Guang, Liu Shuo, Zhang Lei, Yin Guo-Bing, Feng Rong-Pu. Midinfrared As2 S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity. Acta Physica Sinica, doi: 10.7498/aps.60.064213
    [11] Zhang Yun. Periodically poled lithium niobate investigated by micro-Raman spectroscopy and luminescence. Acta Physica Sinica, doi: 10.7498/aps.59.5528
    [12] Shi Li-Hong, Yan Wen-Bo. Study on infrared absorption spectra of congruent lithium niobate crystals at low temperature. Acta Physica Sinica, doi: 10.7498/aps.58.4987
    [13] Wang Da-Lin, Sun Jun-Qiang, Wang Jian. High-speed data format conversion from non-return-to-zero to return-to-zero based on periodically poled lithium niobate waveguides. Acta Physica Sinica, doi: 10.7498/aps.57.252
    [14] Magneto-photorefractive effect in lithium niobate crystals. Acta Physica Sinica, doi: 10.7498/aps.56.7015
    [15] Zhang Kai-Chun, Liu Sheng-Gang. THz wave radiation in periodically poled lithium niobate during on optical rectification. Acta Physica Sinica, doi: 10.7498/aps.56.5258
    [16] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Tan Li, Li Shi-Chen. . Acta Physica Sinica, doi: 10.7498/aps.51.2528
    [17] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shi-Chen. . Acta Physica Sinica, doi: 10.7498/aps.51.91
    [18] Yao Jiang-Hong, Chen Ya-Hui, Xu Jing-Jun, Zhang Guang-Yin, Zhu Sheng-Xing. . Acta Physica Sinica, doi: 10.7498/aps.51.192
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shi-Chen. . Acta Physica Sinica, doi: 10.7498/aps.51.565
    [20] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, doi: 10.7498/aps.51.1521
Metrics
  • Abstract views:  22
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  22 December 2025
  • /

    返回文章
    返回